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ABSTRACT

This report examines data link requirements for a portable unmanned aerial vehicle.
Crucial to the operation of such a data link is the development of suitable computer
algorithms that are capable of significantly compressing and reconstructing image data
in a timely manner for viewing at a remote station. As a consequence of the near real-
time requirement, we investigate recent advances in lossy data compression
techniques concentrating on transform coding techniques involving the discrete cosine
transform, fractals and wavelets. At present the discrete cosine transform is available
on a microprocessor chip and can offer acceptable reconstructed images close to real-
time with compression ratios of up to 35:1, but other techniques promise even higher
compression ratios and possibly a near real-time capability in the not too distant
future.
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Data Link Technology For A Portable
Unmanned Aerial Vehicle

Executive Summary

In this report we review the current state of the art regarding three of the most
prominent image compression techniques, namely discrete cosine, fractal and wavelet
transform coding techniques. Our interest in these techniques arises out of a desire to
achieve as much compression as possible in the real time transmission of image data
from the sensor payload onboard a portable Unmanned Aerial Vehicle (p-UAV) to a
ground control station similar in form to a laptop computer. In particular, we find that
compression ratios of greater than 30:1 are required in order to receive VGA images of
640X400 resolution and 24 bit colour at a TV frame rate of 25 Hz. This would be
suitable for Line Of Sight (LOS) naval surveillance operations. Even greater
compression ratios are required to receive images of 320X200 resolution and 8 bit grey
scale at a frame rate of 1 Hz which would allow for transmission along a High
Frequency (HF) data link in land based reconnaissance operations. An HF data link
removes the need for LOS transmission, although it may be beyond the present
capabilities of all three compression techniques to produce images of acceptable
quality. For LOS transmission in the Very and Ultra High Frequency bands image
compression would still be required, particularly if transmission were to occur at the
TV frame rate. Even for lower frame rates image compression is desirable either to
reduce the demand on the limited power source of the p-UAV, extend the vehicle’s
range of operation or make transmission more jam resistant.

Of the three lossy techniques, the most popular is the Discrete Cosine Transform
(DCT) technique, which is based on discrete Fourier transform theory. Although still
undergoing further development as described in this report, the DCT technique has
already met the standard for image compression put forward by the Joint
Photographic Experts Group (JPEG). The DCT is limited in the amount of compression
that can be achieved without serious degradation of the data resulting in block
artefacts appearing on reconstructed images. Thus we consider the non-conventional
techniques of fractal and wavelet transform coding, which promise even higher
compression ratios than the DCT.

Fractal transform coding relies on the fact that many real world objects possess local
self-similarity and can be described in terms of fractal transformations. These can be
transmitted along a communications channel using less bandwidth than the pixel data
of the original digital image. Fractal images not only provide a resolution independent
image of the original, but can also yield very high compression ratios. However, at
present it is questionable whether fractal coding is feasible for real-time applications,
this report covers recent research directed at this question. In particular, we discuss
recent attempts aimed at reducing the time expended in searching the domain blocks
for each range block of the original image during encoding. We also describe the




Accurate Fractal Rendering Algorithm which enables the fast decoding of video
streams. These developments offer real hope that a fractal encoding/decoding system
will be available for near real-time applications in the not too distant future.

Wavelets can be viewed as bumps that can be squeezed or expanded by dilation and
shifted by translation. An arbitrary function can be decomposed into a series of
wavelets forming a complete orthonormal set, the underlying principle behind wavelet
transform coding. Wavelet coding has attracted much interest over the past few years,
mainly because it can bring about a reduction in the block artefacts associated with the
DCT. Thus, it promises better quality reconstructed images at higher compression
ratios than the DCT. At present it is unable to match the real-time performance of the
DCT and may never reach those of fractal transform coding. With further advances in
microprocessor technology and in optimising the software approaches described in
this report, there is more than a possibility that this technique can be applied to near
real-time applications soon.

The value to Defence of this work is a greater understanding of the current state of
lossy image compression techniques for possible implementation in communication
systems where large amounts of data are required to be transmitted over narrow

bandwidths.
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1. Introduction

In a previous report [1] Cameron and Kowalenko, hereafter referred to as CK,
discussed the feasibility of a portable Unmanned Aerial Vehicle (p-UAV) for
deployment in various close range reconnaissance and surveillance missions currently
being conducted by the Australian Defence Forces (ADF). It was expected that such a
system would provide a capability estimated to be 50 to 60% of the performance of
much larger and significantly more expensive systems. Also discussed in the report
was the need to employ data compression techniques when considering the
transmission of realtime image data from the vehicle to the Ground Control Station
(GCS). They pointed out that in order to transmit realtime TV pictures a large
bandwidth was required, which meant that transmission could only occur in the Very
High Frequency (VHF) and Ultra High Frequency (UHF) bands. Hence, the range of
the p-UAV was restricted to Line Of Sight (LOS) operations.

In CK it was stated that a combination of reducing the frame rate and compressing the
transmitted data would bring about a decrease in the bandwidth, thereby reducing the
power requirements of the system substantially. Thus, it was proposed that in the
short term the data link for the p-UAV could employ the conventional transform
coding techniques to compress data in the VHF/UHF bands, which in turn would
provide the p-UAV with an operational range of about 30 km using a directional
antenna. A longer term goal might be to employ more novel data compression
techniques offering even higher compression ratios such as fractal and wavelet
transform coding combined with the reduced frame rate. This could either:

(a) extend the range of the p-UAV;

(b) remove LOS limitations by operating in the lower frequency HF band;
(c) reduce directional antenna requirements;

(d) improve jam resistance.

In this report we aim to investigate the current state of the art with regard to lossy data
compression techniques being employed in the transmission of image data over high
frequency channels. Although many transform coding techniques exist [2], we shall be
concerned primarily with the Discrete Cosine Transform (DCT) technique, which has
become the standard for the Joint Photographic Experts Group, more commonly
known as JPEG, and the non-conventional fractal and wavelet transform techniques.
Although the latter two promise higher compression ratios without as much visible
degradation than the former technique in specific applications, they are still evolving
and as a consequence, they have not as yet replaced the DCT as the principal image
compression technique. In particular, as we shall see, it is only due to advances in the
last few years that fractal transform coding has been able to offer the possibility of a
near realtime capability, which is so crucial in receiving image data from a UAV.
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Realtime fractal transform coding is currently receiving much attention and we aim to
discuss these developments in the present report.

The contents of this report are arranged as follows. Section 2 contains a summary of
the basic principles of data transmission, which are necessary for understanding why
transmitted images need to be compressed. The next section discusses the basic theory
of electromagnetic propagation required selecting an appropriate carrier frequency for
the transmission of data between the p-UAV and the GCS. In Section 4 we present
basic information theory that not only clarifies the need for employing data
compression techniques, but can also be used to evaluate them. Section 5 contains a
description of the DCT both from a theoretical and practical point of view. In Secs. 6
and 7 we describe the current state of the art regarding the non-conventional
techniques of fractal and wavelet transform coding. In discussing the three data
compression techniques we relegate the mathematics to three separate appendices.
Section 8 concludes with an evaluation of the techniques in regard to the p-UAV.

2. Modulation Techniques

Data links are not only required in all UAV systems for the transmission of realtime
data but also for the navigation and control of the vehicle. Data link requirements
which may include the need for data compression are determined primarily by the rate
of data transmission between the vehicle and the GCS. Specifically, an uplink is
required for manoeuvring the vehicle via the GCS whereas two downlinks are
required respectively for monitoring the vehicle's position and for the transmission of
image data collected by the sensor payload on the vehicle. The second downlink is
referred to as a wideband downlink since the transmission of image data requires a
much larger bandwidth than that required for the narrow links connected with
navigation and control of the vehicle. Typical transmission rates for uplink control
signals are less than 10 kHz while those for the transmission of sensor payload data,
may require a transmission rate greater than 10 MHz depending on mission
requirements for the UAV.

In a telecommunication system the first requirement is that the original information
energy is converted or modulated into electronic signals [3]. These signals may then
require amplification to increase the power levels before they are transmitted to a
receiver at the destination. On reception the signals may be amplified again before
being converted or demodulated into recognisable replicas of the original information.
Thus, a complete system [4] consists of:

(a) a transmitter, (which includes the source of the original information),
(b) the transmission medium, and

(c) areceiver.
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In order to transmit data efficiently, data transmission rates or more specifically, the
sinusoidal electromagnetic signals, known as carrier signals, are modulated by
superimposing on them information signals. Common forms of modulation are;

(a) Frequency Modulation (FM),
(b) Amplitude Modulation (AM),
(c) Phase Shift Key (PSK),

(d) Frequency Shift Key (FSK),

(¢) pulse modulation which includes amongst others Pulse Amplitude Modulation
(PAM), and

(f) Pulse Code Modulation (PCM).

In addition, variants of these modulation methods exist, for example, Differential PCM
(DPCM), Quadrature or Quaternary PSK (QPSK) and Differentially-encoded QPSK
(DQPSK or 4-phase DPSK). The last technique is efficient whilst allowing reliable
reception with a simple demodulator [5]

FM and AM are essentially continuous wave modulation techniques, which involve
analogue information signals with the former conserving transmitter power better
than the latter [6]. However, here we concentrate on the transmission of digital signals
rather than analogue signals since there are definite advantages in adopting a digital
mode of transmission. In particular, digital signals are robust and can be easily
processed [7] and because of their regenerative property, they can be transmitted over
long distances through multiple switching centres and relay links with little noise
interference or impairment. In addition, they are easily multiplexed, switched or
recorded. Thus, a digital data link will be less affected by noise, which, in turn, means
that less power is required to transmit signals with the same bandwidth. Furthermore,
since CK proposed that the sensor payload consist of a CCD camera combined with a
second or third generation image intensifier in Ref. [1], compatibility with such a
sensor payload is easier to achieve by employing a digital transmission system rather
than an analogue transmission system.

The remaining modulation techniques given in the above list operate on digital or
binary data, although pulse modulation (PM) systems require some form of c-w
modulation in transmitting data [4]. In a PCM system signal information is transmitted
in digital form by sampling an analogue signal at regular intervals to produce a pulse
amplitude modulated signal. Therefore, a PCM system can utilise solid state digital
components [8]. Consequently, PCM tends to be favoured in applications where mass,
cost and power consumption need to be minimised.
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Before proceeding further with our evaluation of modulation techniques, we need to
consider the display of images at the GCS. Although capable of offering higher
resolutions at cheaper prices and of producing images with significantly less glare,
Cathode Ray Tube (CRT) screens are more bulky, operate at higher voltages, consume
more power and are less robust than Liquid Crystal Displays (LCDs). For these reasons
LCDs are used in laptop computers. They also come in different dimensions with a
variety of resolutions, the most common being 320X200, 640X400 and 640X480. In
order to display images with adequate detail, more levels of grey (or colour) are
required for the low resolution screens than for the higher resolution screens. Thus the
number of colours required to obtain adequate imagery for a resolution of 320X200
would be at least 256 whereas for a resolution of 640X480 perhaps only two colours
(black and white) are required since this resolution is superior to that for newspapers.
A more detailed discussion of the relative merits of both CRTs and LCDs is given in

Ref. [9].

FSK and PSK are commonly used in the transmission of data along computer and
printer communication lines or cables. Since our aim is to produce digitised images on
a laptop LCD (one of the requirements for the p-UAV presented in Ref. [1]), variants of
FSK and PSK become the preferred modulation techniques. For covert transmission
the preferred modulation technique is a PSK variant because it provides a constant
amplitude, thereby permitting the power density to be spread evenly over the entire
extended electromagnetic spectrum [10]. One disadvantage of coherent PSK systems,
however, is that the receiver requires a good phase reference, which is difficult to
achieve in practice. Thus the signal is degraded by extracting a phase reference from
the transmitted signal.

The frequency spectrum of a modulated signal is usually symmetric about the carrier
frequency except for SSB transmissions. The combined parts of the spectrum above
and below the carrier frequency form the bandwidth of the signal. For the case where
sensor data are transmitted in TV format the bandwidth depends on the number of
picture elements per frame and the rate of transmission [8]. One important aspect in
transmitting large amounts of data over a single communication link is the provision
of pre-allocated channels that are capable of passing high enough frequencies, ie.
channels of large enough bandwidth. Commercial TV channels require about 6 MHz,
but the bandwidth required for the transmission of a signal is dependent on the type of
modulation employed by the telecommunication system.

As the modulated signals traverse the transmission medium or communication
channel, they always become distorted due to additive noise (contamination by
unwanted signals) and interference, which, in turn, place limitations on the
transmission of data. At the receiver the best possible replica of the original
information signal or message is obtained by demodulation, i.e. the removal of the
carrier signal from the modulated signal and then filtering to remove noise.
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3. Propagation

Because received messages are not perfect replicas of the original message, there is
always a certain amount of uncertainty involved in decoding the received data. This,
however, can be reduced by increasing the power of the original signal. Thus the ratio
of the average signal power to the noise power (SNR) is an indication of the
uncertainty or error in the received data. An increase in bandwidth allows a signal to
be converted into a form that makes it more immune to noise. To transmit a given
amount of data, either the signal power can be increased and the bandwidth reduced
or the signal power can be reduced and the bandwidth increased.

The energy radiated by a transmitter can reach the receiving station or GCS by using
one or more of the following modes [3,11]:

(a) surface or ground waves, which propagate by following the earth’s curvature to
distances of 15 to 110 km depending on frequency. An appreciable amount of the
energy of electromagnetic waves is dissipated in this mode. These waves have
frequency bands of below 300 Hz, 300 Hz-3 kHz, 3-30 kHz, 30-300 kHz and 300
kHz-3 MHz and 3-30 MHz, which correspond to Extremely Low Frequency (ELF),
Infra Low (ILF), Very Low Frequency (VLF), Low Frequency (LF), Medium
Frequency (MF) and High Frequency (HF) waves.

(b) sky waves, which are used for HF radio communications systems including long
distance radio telephony and sound broadcasting. HF sky waves can be used on
different portions of the frequency range 3-30 MHz at different times of the day.
Sky waves are directed into the ionosphere and under certain conditions can be
reflected to the required destination. The maximum and minimum useable
frequencies for transmission change during the day. Hence, an operating
frequency must be chosen from this range, which places a further restriction on
the bandwidth for the transmission of signals in the HF band. For example, at 1400
hr the difference between the two frequencies is about 16 MHz whereas at about
midnight the difference is about 2 MHz. In addition, interference from other users
and atmospheric noise contribute even further to channel limitations. For more
detailed information about the propagation characteristics of HF waves, see Ref.

[12].

(c) space or LOS waves, which are utilised for both sound and television broadcasting
and operate in the VHF (Very High Frequency), UHF (Ultra High Frequency) and
SHF (Super High Frequency) bands of 30-300 MHz, 300 MHz-3 GHz and 3-30 Ghz
respectively. These waves are dependent upon the distance to the horizon.

(d) via satellite systems such as the GPS system described in the previous section.

Satellite systems can be employed to carry multi-channel telephony systems, TV
signals and data in the UHF and SHF bands.
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(e) scatter systems, which operate in the UHF and SHF bands. These are employed in
multi-channel telephony links.

For a discussion of electromagnetic propagation problems in tactical environments
such as battlefields and aircraft systems the reader is referred to Ref. [13].

In data transmission, a binary pulse is a pulse with one of only two possible
amplitudes or states whilst a binary message or signal is a sequence of binary pulses
occurring at regularly spaced intervals of say 1/R sec or at a rate of R/sec [4]. A bit is
defined as the maximum amount of information that can be transmitted in a single
binary pulse [14]. The uplink radio control for a UAV requires a mean data rate of up
to 1 kbit/s and that a similar transmission rate for the telemetry data on the downlink
is required for the necessary flight and management functions [6].

All telecommunication systems are capable of transmitting a maximum number of bits
per second without loss in a channel. This is known as the channel capacity and is the
central concept of data communication [15]. In addition to bandwidth, the channel
capacity is limited by the Signal to Noise Ratio (SNR) for the system [14]. If a channel
were free from noise, then the channel capacity would be infinite but since there is
always some noise in the process of transmission, the channel capacity is always finite.
For SNRs greater than 1 the channel capacity exceeds the bandwidth assuming that the
noise is Gaussian and white. To cite interesting examples of channel capacity, the
maximum downlink rate for the Space Shuttle is 48 Mbit/s while that for the proposed
Space Station Freedom is 75 Mbit/s [2].

Current UAV transmission frequencies are restricted to an upper limit of 15 GHz
whereas the lowest frequency when using an omnidirectional antenna is 2 MHz [10].
In a hostile ECM environment the effective jamming zone for a UAV can be reduced
significantly, if the UAV is equipped with a directional antenna, but this may require a
higher transmission frequency. There are several factors in selecting an appropriate
carrier frequency for a data link, which, in turn, influence the cost, mass and power
consumption of a UAV [8]. The minimum detectable signal power at a receiver is
inversely proportional to the square of the frequency and hence, a lower frequency is
more desirable. However, for a fixed antenna size, increasing the frequency results in
increased gain, although the beamwidth is narrowed. Lower frequencies are also
preferred to minimise the cost and mass of link components and atmospheric loss
increases with increasing frequency. For naval applications vertically polarised
radiation is preferred since multipath effects are greater for horizontally polarised
radiation. Different carrier frequencies separated by several signal bandwidths should
be used for both the uplink and downlink.

Although an HF data link provides much greater flexibility in that there is no need to
maintain a line of sight with the vehicle, there are two major problems in creating such
a data link for the PUMA. The first problem is the limited allocated bandwidths or
channels for the transmission of data in the HF spectrum. These HF channels, which
are often referred to as voice channels, are 3 kHz wide. By using higher powered
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transmitters to provide SNRs greater than 3 dB, the transmission rate can be extended
to 4.8 kbits/s. With the limited power available on the p-UAV, however, it is most
likely that the channel capacity will be limited to 2.4 kbits/s (a quarter of the standard
transmission rate for computer lines). For an HF data link to be viable, at a reduced
frame rate, a transmission rate in the vicinity of 10 kbits/s is needed.

Single Side Band (SSB) transmission systems can use up to 4 voice channels (12 kHz
bandwidth), two above the carrier frequency and two below [12]. Therefore, it is
feasible to consider wideband HF data links, although in practice, problems may be
encountered in obtaining approval to use more than one voice channel. However, as
the p-UAV is likely to be deployed in missions conducted in remote areas over
distances up to 30 km from the GCS [1], this approval may not be so difficult to obtain.

The second problem in using HF waves is concerned with their propagation
characteristics. Sky waves are particularly useful as a means of transmitting signals
over distances greater than 150 km, and may achieve ranges of over 3,200 km,
although predicting the reflection off the ionosphere and obtaining consistent long
range communication can be difficult. For short distances up to 80 km the groundwave
mode is the appropriate form of HF communication, although certain conditions such
as manpack radio operations in dense wet terrain can limit the usefulness of this mode
to only a few km [16]. Furthermore, the gap beginning where the groundwave
becomes too weak for communication and ending where the sky wave returns to earth
has been considered as a region where HF communication is ineffective and is referred
to as the skip zone, which in dense mountainous terrain can range from 4 to 150 km
and hence, includes the operating radius of the p-UAV. =~~~ ="

The problem described in the previous paragraph can be overcome by directing an HF
skywave signal within a narrow band of frequencies at the zenith and then receiving
the reflected wave back on Earth from one of several of the ionised layers in the
atmosphere with a minimal path loss. This propagation mode is referred to as the Near
Vertical Incidence Skywave (NVIS) mode and has been used by the US army since
World War 2. The NVIS mode can be used to eliminate skip zones by adjusting
antenna heights and transmitter frequencies [17]. The best frequency of operation for
this mode lies in the 2 to 10 MHz frequency band [18]. The mode is also dependent on
the directivity and polarisation of the antenna and any ground wave present can cause
interference effects. Nevertheless, an HF-SSB radio with modern features operating in
the NVIS mode can be used successfully to provide satisfactory communications for
low flying tactical aircraft over a 50 km (or greater) range in virtually any type of
terrain condition [18]. During daytime operations a lower power output can be used
although at night and during dawn a high power output must be used to overcome the
presence of noise and interference. With a 400 W transmitter the probabilities of
communications success is 1.00, 0.92 and 0.87 for operation during the day, at dawn
and at night respectively whereas with a 40 W transmitter these probabilities drop to
0.87, 0.59 and 0.73 respectively [18].
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The NVIS mode must be considered for the following situations [16] when:

(a) the area of operations is not conducive to ground wave communications such as
mountainous terrain,

(b) tactical deployments that place stations in anticipated skip zones when using
whip antennas, frequency selection methods and operating procedures,

(c) operating in dense wet vegetation or other areas of high signal attenuation,
(d) prominent terrain features are not under friendly control,

(e) operating from defiladed positions,

(f) operating against enemy groundwave jammers and direction finders, and

(g) flying close to the ground.

The above indicates that it is feasible to design an HF data link utilising either ground
waves or NVISs, although the bandwidth will be very small in comparison with that
from a data link using carrier frequencies in the VHF, UHF or SHF bands. However,
the UHF and SHF links are limited to maintaining a LOS with the p-UAV. Another
problem with data links using higher frequency carrier waves is that they require
costly and heavy components for operation and use significantly more power than
their low frequency counterparts in the HF, MF and lower bands. Furthermore, if VHF
or higher frequency carrier waves are used for data communication, then the GCS may
require a directional antenna to track the vehicle as in the case of Pointer UAV [19].

The selection of an appropriate data link for a UAV is dependent on the nature of the
mission, the amount of power the vehicle can provide and the vehicle's size and design
in accommodating the antenna. For example, an LOS data link would be able to
provide continuous moving pictures during surveillance operations of river banks and
nearby areas (currently being carried out by Regional Force Surveillance Units [20]) or
in the Protection of Vital Assets (PVA) such as the surveillance of air field perimeters.
However, in missions where the vehicle is flying in mountainous or dense terrain, it
may be more appropriate to use HF data links even with their restricted bandwidths.
In addition to the amount of power which can be supplied by the vehicle, the antenna
dimensions for both the vehicle and the GCS must be considered. For example, both
these factors limit TV transmission to about 80 km. To transmit beyond this distance,
relay stations must be used, which simply receive the signal, amplify it and then
retransmit it.
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4. Data Compression

Data compression can be defined as the collection of techniques which reduce the
amount of digital data carrying useful information. These techniques are essential for
the efficient handling of digital information. In addition, they may be useful in limiting
the effectiveness of jamming and may provide a means of transmitting several
channels over the bandwidth of a communication link where normally only one
uncompressed channel could be employed to transmit data. Image data differ from
other forms of data in that they are noisier and hence cannot be preserved exactly,
although they can be preserved sufficiently for the human visual system not to notice.

If digital TV images consisting of 512X512 picture elements or pixels requiring 6
bits/pixel are to be displayed on a screen at 25 frames per sec, then this would
correspond to a transmission rate of at least 40 Mbit/s. Because the transmission rate is
determined by bandwidth, it is also affected by the type of modulation technique. For
example, for 3 bit codes 6 Mbit/s are sufficient to transmit a 1 MHz video signal on a
DPCM system compared with 14 Mbit/s for a PCM system [21]. Furthermore, a pulse
or signal that can assume n distinct states or levels carries information equal to the
logarithm of the number of choices or simply loga(n) bits, for example, an octal pulse
(one with eight different voltage levels) can be represented by combinations of 3 bits
for each level.

To convert a video signal into a digital one, it must be sampled and quantised.
Sampling the amplitude of a modulating signal must be carried out at regular time
intervals. According to the Nyquist criterion, if a waveform has a bandwidth of f Hz,
then it is possible to convey all the information in that waveform by 2f or more equally
spaced samples per second of the amplitude of the waveform [22]. In practice a
sampling rate of at least 4 times the video bandwidth is required for each signal [23].
Quantisation, on the other hand, is the assignment of approximate discrete intensity
values for the amplitudes of the sampled points. The best contrast performance for the
lowest number of coded bits per sample is achieved by using 3 bits corresponding to
eight intensity levels. Thus for a video bandwidth of 2.3 MHz, which corresponds to
the transmission of images with a resolution of 400X300 pixels at a frame rate of 20 Hz,
a typical sampling rate would be 9.2 MHz and thus, a bit rate of at least 27.6 Mbps
would be required assuming a three bit code (eight grey levels) for each sample [23].

Data messages are particularly susceptible to instantaneous loss of signal since fading
or corruption by noise can result in the loss of a few bits that can destroy the
information content. The most important characteristic of a data link is its minimum
Bit Error Rate (BER) as opposed to the minimum received Signal to Noise Ratio (SNR)
for an analogue channel. The difficult part in constructing a data link is minimising
BERs by attempting to reduce noise power independently of signal power because
there is a limit on the amount by which the latter can be increased. Frost et al [8] state
that because the uplink of a UAV should respond correctly to the GCS commands, the
BER should be as small as possible (~ 10¥) whereas BERs as high as 0.001 may be
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acceptable in the display of image data due to the high level of redundancy. The
amount of redundant data in a TV image has been estimated to be as high as 99.9% in
special cases. The large amount of redundancy is attributed to the fact that the Human
Visual System (HVS) responds most responsively to scene details of high contrast, i.e.
the edges of objects in an image. BER values of 0.001 may be achievable using ground
or sky waves but for the NVIS mode and the skip zone the BERs are likely to be much
worse for considerable periods.

The ability to measure the maximum amount of information per second that a system
can transmit cannot answer the question of which system or group of systems has
sufficient capacity to transmit a specified class of information bearing messages. To
answer this question the information content of a signal must be determined. For
example, the appropriate system to transmit a speech in English is determined by the
information content of the speech and the time available to complete transmission [4].
The information content in messages consisting of equally likely symbols is given by I
= M logx(N) where I is the information content, M is the number of symbols and N is
the number of bits per symbol. However, in most cases certain letters and
combinations of letters occur more often than others, for example, e occurs more
frequently than z and u is more likely to appear after a 4. Thus, the information content
of a message not only relates to the number of possible signal combinations but also to
their relative frequency of occurrence, which, in turn depends upon the source of the
message. The measure of the amount of information contained in a set of data yields
the entropy of the information source producing the data. Entropy is defined as the
sum over all members of a symbol alphabet in which each probability of occurrence is
multiplied by its logarithm to base 2.

For a digital video image, the symbols are the quantised intensity values at the pixels.
For example, in 8-bit quantisation (typical for video quality animation) there are 256
symbols and the entropy is given in bits per pixel (bpp), which is known more
commonly as the bit rate. In general, the intensity values at nearby pixels are highly
correlated and as a consequence, digital video images contain much redundant data,
thereby yielding a lower entropy.

The need for data compression in a p-UAV wideband uplink can now be
demonstrated by considering the transmission of image data. For images of 320X200
pixels with 256 (8 bits) levels of grey on an LCD screen, a minimum of 0.51 Mbits/s are
required for a new frame every second. Additional bits are required to indicate the
start and end of each quantised level, the so-called start and stop bits. Therefore, 0.64
Mbits/s need to be transmitted to exhibit one frame per second. Furthermore, the
actual rate may be even greater if an additional bit is required for error bit checking,
the so-called error bit. However, the pre-allocated bandwidth for HF frequencies is
about 10 kHz. If the assumption is made that the entire bandwidth can be used for the
transmission of data, then to obtain 1 image per second on an LCD for an SNR of about
1, i.e. a channel capacity of 10 kbits/s, the data would need to be compressed by at
least a factor of 64. The compression ratio is even greater for the transmission of
monochrome (black and white) images with a 640X400 resolution.
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For naval vessels conducting surveillance operations over an open sea, mission
requirements may call for highly resolved images, for example, 600X400 pixels (VGA
quality) with 24-bit colour at TV frame rates of 25 Hz. In this situation an LOS data link
would be required. The given image resolution may be necessary since much of the
information displayed on the images received at the GCS would consist of open sea
and sky. On the other hand, Rejman [24] states that the effects of reducing frame rate

are;

() manual navigation and feature-flying tasks take much longer to accomplish,
(b) task areas are covered less efficiently, and

(c) the task of target detection may be performed poorly.

Thus, the frame rate should be kept as high as possible even though in some cases
reducing it may be necessary to accommodate the transmission of image data along a
narrow pre-allocated bandwidth such as an HF data link.

To transmit VGA images, which only allow 16 colours (4-bits) per pixel, a transmission
rate of 25 Mbits/s is required for a frame rate of 25 Hz. This transmission rate exceeds
greatly the channel capacity of TV channels whose bandwidths are typically 5 MHz.
For a system with an SNR of 10 dB, which is indicative of the minimum for a digital
system, the channel capacity for a bandwidth of 5 MHz would be 17 Mbits/s. Thus,
VGA images need to be compressed if the frame rate is kept at 25 Hz.

Even if the frame rate were reduced so that the amount of data transmitted to the GCS
could be accommodated by a TV channel, there are other important reasons for
compressing sensor payload data, provided that the resulting images do not exhibit
serious degradation. If the system is to operate in an environment rendered hostile by
the use of Electronic Counter Measures (ECM) such as jamming, then a reduction in
signal bandwidth would reduce the vulnerability in the transmission of sensor data. In
addition, the lower the signal bandwidth, the lower the power required to transmit
data. Thus the transmission of less redundant information can be exploited to produce
an effective improvement in SNR, i.e. reducing the bit rate is equivalent to increasing
transmitter power. This is particularly important for UAVs with limited power sources
such as the p-UAV investigated by CK [1].

There are numerous data compression techniques for compressing binary data [2],
which can be categorised as follows;

(a) reversible or information-lossless image compression. Here the original digital
representation of an image can be fully reconstructed at the receiver from the
compressed data. Examples include run-length coding, contour coding, Huffman
coding, arithmetic coding and conditional replenishment.

11
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(b)

©

(d)

)

®

predictive methods. These involve predicting the intensity value at a given pixel
based on the values of previously processed pixels. Examples include the above-
mentioned DPCM, Delta Modulation (DM), and Motion Compensation (MC).

block methods. Here the image is subdivided into blocks, which are then
processed in a variety of methods. For example, in Vector Quantisation (VQ) the
blocks are compared to a codebook of vectors and the code with the closest match is
transmitted while in block truncation coding the value at each pixel in a block is
coded as a 0 or a 1 depending on whether it is above or below a chosen threshold.
Digital data such as character strings cannot be transmitted using vector
quantisation because small changes in the numerical value of a character lead to
enormous changes in meaning.

Human Visual System (HVS) compensation. These techniques attempt to
compress video images by eliminating data not perceptible to the HVS, even if the
data are important from an information theory point of view. Some techniques
apply a model of the HVS directly to the image data whereas others have been
developed to represent as many features of the HVS as possible. Examples include
the method of synthetic highs, pyramid coding, regional growing and directional
decomposition.

transform coding. This information lossy technique uses a mathematical operator
to produce an array of uncorrelated or nearly uncorrelated data from the highly
correlated data representing a digital image. Examples include the Karhunen-
Loeve Transform (KLT), the Discrete Cosine Transform (DCT), the Slant
Transform and the Hadamard Transform;

hybrid techniques. These consist a mixture of the techniques described above. An
example is the DCT/VQ, which involves using VQ on the DCT coefficients.

Performance of data compression techniques is evaluated in terms of the Mean Square
Error (MSE) or variants of it. The MSE is essentially an error measure consisting of the
sum of the square of the intensity differences between the reconstructed and original
images divided by the square of the number of intensity values. In later sections we
shall use a variant, the Peak Signal-to-Noise Ratio (PSNR). This is given by,

PSNR= 20 logio(b/dms),

where, b is the largest possible value of the signal (typically 255) and dms is the root
mean square error difference between two images f and g defined as

dps = [.(F53) -8 (5,9 dxdy (1)

In the above, (x,y) refers to the position coordinates of both images.
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Lossless techniques cannot offer the high compression ratios required for the p-UAV
data link and of the remaining techniques the one that has become the most prominent
is the DCT. This technique offers both high compression ratios and a low MSE [2],
which the other transform techniques cannot offer. At the same time it meets the JPEG
standard. However, there are two relatively new transform coding techniques which
promise even higher compression ratios and good fidelity. These are fractal and
wavelet transform coding techniques. In what follows we aim to discuss these
techniques in detail and review the current state of the art in employing these
techniques in image data compression.

5. The Discrete Cosine Transform

We begin our study of the image data compression techniques mentioned at the end of
the previous section with the DCT, which was first employed by Ahmed et al [25]. The
DCT is an orthogonal transformation in that mathematical operators are used to form a
complete orthogonal set of unique basis vectors. The transform acts to ‘pack’ a large
number of highly correlated image data samples into a smaller number of uncorrelated
coefficients [2]. Of the three techniques, which we aim to review, the DCT algorithm is
the only one that meets the JPEG standard for sequential lossy compression according
to page 219 of Ref. 26 and as a consequence, it has become synonymous with JPEG
compression.

A major advantage of the DCT is that its basis vectors are known. Hence these do not
need to be calculated for every transform block, thereby reducing the encoding time.
They also do not need to be transmitted together with the coefficients, thereby
reducing the transmission time. Another advantage of the DCT is that there are
already several fast algorithms for computing them [2].

DCT image compression involves dividing the original image into smaller NxN blocks
and then transforming these blocks via the Forward Discrete Cosine Transform
(FDCT) into equal-sized blocks of coefficients in the frequency domain. Because it
employs the same basis vectors for each transform block, they only need to be
evaluated for the first transform block with a lookup table being used for the other
blocks. Data compression is achieved by assigning fewer bits to the coefficients in
order to remove redundant information via a couple of methods. First, threshold
sampling is used so that all coefficients above a certain magnitude are retained while
those below the threshold value are set equal to zero. Second, the NxN array is
compressed further by undergoing rounding-off or quantisation of the pixel intensity
levels. The degree of quantisation is greater for the higher frequency coefficients since
the human eye is more sensitive to rounding-off at the lower frequencies. The resulting
data are encoded via a lossless technique such as arithmetic or Huffman coding to
avoid the loss of time experienced in transmitting the many coefficients that become
zero after quantisation. The data can then be transmitted over a communication link

13
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with some error correcting code to enable decoding at the receiver by applying the
Inverse DCT (IDCT) which gives a representation of the original output image [2].

When the DCT is implemented using the JPEG standard, the image is first partitioned
into 8x8 blocks and the FDCT is applied to these [27]. In JPEG compression,
thresholding and quantisation occur together in one matrix. The DC term, a DCT
coefficient representing the mean pixel value for each block, is differenced from the
DC term of the preceding block in a scanning order and the remaining coefficients are
passed to an entropy encoder. An entropy coding scheme, typically Huffman coding,
is then employed to assign codewords to coefficients in such a way that short
codewords are assigned to the more frequent terms while longer ones are assigned to
the rarer terms. The values are encoded in a zigzag manner as there is a high
correlation between values along this zigzag scan. Decompression is accomplished by
applying the inverse of each step in the opposite order [26,28]. For a discussion on the
mathematical details concerning the implementation of the DCT the reader is referred
to Appendix A.

5.1 Improvements in the DCT

JPEG compression can produce undesirable blocking artefacts for high compression
rates. That is, if the amount of thresholding and quantisation is too severe, then sub-
block boundaries may appear in the reconstructed image. At the same time setting too
many high frequency coefficients to zero can lead to a loss in resolution. As a
consequence, much activity is being directed at developing non-standard methods of
employing the DCT and using JPEG compression as the bench-mark. Rather than
rounding off to the nearest integer values after dividing by quantisation coefficients as
in JPEG compression (see Appendix A), Eude et al [29] have recently proposed using a
mixture of Gaussian distributions on DCT coefficients in their search for a better
means of quantisation. They found that by approximating the high frequency DCT
coefficients by a single Gaussian distribution and the low ones by a mixture of two or
three Gaussian distributions, they were able with their new quantisation matrix to
remove blocking effects present in JPEG compression.

Another area where DCT image compression is being improved is in the acceleration
of the algorithmic process. For example, in Ref. [30] Hung and Meng describe two
methods for accelerating the computation of the inverse DCT (see Appendix A) by
exploiting the sparseness of the quantised transform coefficients. One method referred
to as the Symmetric Mapped Inverse DCT (SMIDCT) can perform up to three times
faster than the Forward Mapped Inverse DCT (FMIDCT) [31], the previous best
optimisation of the inverse DCT for sparse matrices [32]. In addition, Jung and Mitra
[33] have developed a method that not only reduces the blocking effect mentioned
above, but also accelerates the computation of DCT coefficients. Basically their method
involves decomposing the computation of an N-point DCT into a computation of an
(N/2)-point DCT and an (N/2)-point Discrete Sine Transform (DST). Jung and Mitra
refer to this method as SubBand DCT (SB-DCT) decomposition and have tested the
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method on images with a 256x256 resolution. They have demonstrated that their SB-
DCT method not only matches JPEG coding with respect to PSNR but also performs at
least twice as fast. In addition, the compressed images exhibit much less blocking
effects than the corresponding JPEG compressed images.

Khataie and Soleymani [27] have proposed two different two-stage image compression
schemes aimed at achieving better quality images than JPEG compression for
moderate to high PSNRs. In the first stage both schemes process the more important
low frequency components of the image through transform coding while the high
frequency components lost in the first stage are encoded in the second stage. The first
scheme employs a DCT algorithm combined with a high rate Lattice-based Vector
Quantiser (LVQ) algorithm in the first stage while the second scheme employs a
standard JPEG encoder. For a description of LVQ schemes, most of which employ the
algorithm designed by Linde, Buzo and Gray (known as the LBG algorithm) [34], the
reader is referred to Ref. [2]. In the second stage each scheme processes the “error” of
the residual image formed by subtracting the output of the first stage from the original
image. Khataie and Soleymani use the same low-rate LVQ in both schemes. They find
for PSNRs of greater than 38 dB the first scheme is much superior to JPEG
compression. For example, they achieve 1.2 bpp for a PSNR of 40.56 as opposed to 1.8
bpp via JPEG compression. They also find that although 0.7 bpp can be achieved at a
PSNR of 36.0 using JPEG compression compared with 1.05 bpp from the second
scheme, the latter outperforms JPEG compression significantly for high quality
compression. For example, 1.6 bpp can be achieved for a PSNR of 47.73 via the second
scheme whereas JPEG offers only 3.9 bpp. Khataie and Soleymani conclude that both
schemes offer a considerable improvement over standard JPEG compression for
moderate to high quality compression. By using either scheme more than ninety five
per cent of input information can be retrieved with a bit rate less than 2 bpp. However,
these authors do not discuss the amount of time involved in processing images via
both schemes. In addition, although these techniques are still under development, for
them to be viable for the p-UAV much higher compression ratios are required.

In regard to reducing the processing time Walmsley et al [28] have proposed a pruning
algorithm in which a smaller proportion of DCT values are calculated. That is, instead
of calculating DCT values for an 8X8 image block, they only find it necessary to
calculate the DCT values for a 4X4 subset whilst simultaneously maintaining an
acceptable image quality. Their pruning algorithm requires a total of 82 multiplications
and 227 additions for a block compared with 192 multiplications and 464 additions
using the standard row-column approach. Another advantage is that parallelisation
can be performed during stages of the algorithm because two or more processors can
be invoked to calculate separate data partitions that arise from the decomposition of
the DCT. When applied to the JPEG standard the pruning algorithm not only
accelerates image compression as a result of calculating less DCT coefficients but also
produces higher compression ratios with negligible degradation in image quality due
to the fact that there is only one long length of zeros along the zig zag scan of the
encoder. Walmsley et al find that for an acceptable loss in image quality, i.e. a pruning
value of 4, their algorithm results in a speed up of over 50% on JPEG compression.

15
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Another area of much interest is the introduction of new architecture designed to use
less area of each processing chip. For example, Wang and Chen [35] have proposed
using systolic arrays in DCT computation, which have received much attention ever
since they were introduced by Kung and Leiserson [36] in the design of high speed
signal processing systems. Systolic systems possess the desirable features of regularity,
modularity and concurrency, thereby enabling parallel computing architectures to be
created from them which are necessary in meeting the realtime requirements for the
transmission of image data. On the other hand, Mariatos et al [37] have introduced a
novel architecture employing the Coordinate Rotation Digital Computer (CORDIC)
Circular Rotation Algorithm. The CORDIC algorithm is based on the decomposition of
the DCT matrix into rotations. The new architecture requires less than 40% of the area
of previous CORDIC architectures to perform DCT computations and when
extensively pipelined (up to 80 pipeline stages can be set) it can process the fast signals
of High Definition Television (HDTV). Mariatos et al have adopted 2-bit digit-serial
arithmetic to bring about a reduction in hardware. The chip can perform at a
throughput rate of 500 MHz or 250 Mpixels/s and needs about 2.6K gates.

Although the DCT has become the most popular image compression technique mainly
because of its implementation in the JPEG standard, from the preceding material it can
be seen that there is still room for improvement, especially in the transmission of
HDTV signals or in the transmission of image data over relatively narrow bandwidths
with a requirement for a near realtime capability such as our p-UAV application.
Current activity is concerned mainly with reducing the processing time although
improvements in the quantisation process may lead to marginally higher compression
ratios. The techniques mentioned above should be monitored as they will undoubtedly
lead to a new JPEG standard in the future. For our p-UAV application, however, we
require much higher compression ratios than those offered at present by the DCT,
particularly if we wish to consider HF propagation. Two techniques promising higher
compression ratios than the DCT are fractal and wavelet transform coding and we
shall investigate the current state of the art of these techniques in the following
sections.

6. Fractal Transform Coding

A fractal is a fragmented geometrical shape that can be continually subdivided into
parts, in which each part is a copy of the original shape only reduced in size. That is,
fractals are generally self-similar. Many real world objects, which are not simple
geometric shapes such as clouds, mountains and coastlines, can be described by
fractals because real world images possess local self-similarity as described in Ch. 1 of
Ref. 38. This means that only parts of images possess the same self-similar
transformations and hence, an image consists of properly transformed parts of itself.
These transformed parts seldom combine to form an exact copy of the original image.
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As a consequence, an image encoded as a set of fractal transformations will not be an
identical copy, but an approximation, i.e. lossy.

It should also be noted that while we are primarily concerned with realtime
applications of fractal image compression in this report, the implementation of this
technique in non-realtime environments has already met with remarkable success. In
1992 Microsoft released a compact disc known as Microsoft Encarta, which is a popular
multimedia encyclopedia containing 7 hr of sound, 100 animations, 800 colour maps
and more than 7000 pictures all encoded in less than 600 Mb of data. Microsoft has
been able to achieve this astonishing feat using fractal image compression techniques.
Thus, it is only a matter of time before consumers will use this technology to store their
valuable pictures on compact disc rather than adopting the archaic procedure of
storing them in photographic albums.

Deterministic fractals possess the intrinsic property of extremely high visual
complexity while being very low in information content [39]. This is because they can
be generated by simple recursive deterministic algorithms and it is this property that
makes them a useful tool in image compression. Transformations used in the
description and pointers to image regions are stored rather than the original pixel
image data. Thus, fractal transform coding yields a set of relations based on the spatial
and spectral geometry of the original image, which describe the original image in
terms of itself. Fractal images not only provide a resolution independent image of the
original, but can also yield very high compression ratios [40]. For a description of the
mathematical concepts leading to the implementation of fractals in image compression
the reader is referred to Appendix B. Here we shall be concerned more with the recent
advances employing this transform coding technique.

We now describe how fractal image compression can be applied to an 256X256 image
in which each pixel is any of 256 (8 bit) levels of grey. Let R,,R,,... R,y,, be the 8X8

pixel nonoverlapping sub-squares of the image and let D be the collection of all 16X16
pixel (overlapping) subsquares of the image which yields 58,081 squares. For each
range block R, a search is conducted through all the domain blocks of D to find the

block D, which minimises the rms metric given by,

d,. (fRxI)w(f) i=L...N. )

That is, we find pieces D, and maps w; , so that when a w; is applied to the part of
the image over D,, something very close to the part of the image over R; is obtained.
There are eight ways to map one square onto another, which means that
8 ¢ 58,081=464,648 squares with each of the 1024 range squares. In addition, a square in
D has four times as many pixels as each R;, so that either subsampling, i.e. choosing

one pixel from each 2X2 subsquare of D, or averaging the 2X2 subsquares
corresponding to each pixel of R, must be adopted to minimise the above equation.

17



DSTO-RR-0087

18

Minimising the rms metric requires not only finding a D; of the image that looks most
like the image above R; but also finding good contrast and brightness settings s; and
o, for the PIFS transformationw, discussed in Appendix B. For each De D, s; and o;

are computed by using least squares regression, which also gives a resulting rms
difference. The chosen D; is the D € D with the least rms difference.

The selection of D, together with the corresponding s; and o; allows the
transformation w, to be put in matrix form. Once a collection w, ,w, ...W,q,, has been

determined, the image can be decoded by estimating the attractor A4 as defined by
Equation. (B3) in Appendix B. In general, not that many iterates are required to obtain
a representation of the original image as Fisher shows on p. 15 of Ref. [38]. Here,
representations are presented after the first, second and tenth iterates with the final
one displaying all the essential features of the original 65,536 byte image. The
transformations that reconstitute the image require only 3968 bytes since each
transformation requires 8 bits in the x and y directions to determine the position of
D,, 7 bits for o;, 5 bits for s; and 3 bits to determine a rotation and flip operation for
mapping D, to R;. The position of R; is implicit in the ordering of the transformations.
Hence, a compression ratio of 16.5:1 is obtained with an rms error of 10.4. Each pixel is
on average only 6.2 grey levels from their correct value while with each iteration more
detail is added.

According to Jacquin [39] the three main issues involved in the design of a fractal
block coding system are;

(@) the partitioning of an image,
(b) the selection of a measure of the distortion between two images,

(c) the specification of both a finite class of contractive image transformations defined
with a partition and of a scheme for the quantisation of their parameters.

In the remainder of this section we shall primarily be concerned with issues (a) and (c)
while issue (b) is discussed in Appendix B.

6.1 Image Partitions

In the previous subsection we presented most of the ideas of a practical fractal image
encoding scheme. An image is first partitioned by some collection ranges R, and then

for each R; a domain block D; from the collection of image pieces is sought that has a
low rms error when mapped to R;. Once R; and D, are known, s; and o; of a
partiioned Iterated Function System (IFS) can be determined in addition to
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a;,b;.c; ,d;,e; and f; of the affine transformation. Eventually, a transformation
W =Uw;, is obtained that encodes an approximation to the original image. So far, we

have concentrated on fixed-size range blocks R;, but there are regions in the original

that are difficult to cover using this approach, for example, a person’s eyes in a
photograph. Furthermore, there are regions that can be covered with a larger R;,

thereby reducing the total number of maps w; required. Optimal partitioning of an
image is not only capable of improving the quality of the reconstructed image, but can
also increase the compression ratio.

There are several methods of partitioning an image, some of which we describe here.
First, Jacquin [39] presents a partitioning technique where an image is partitioned by
using a block coding design based on the theory of iterated contractive image
transformations. The original image Morig is partitioned into domain cells and into
nonoverlapping square range cells of two different sizes forming a two-level square
partition. A partition constructed in this way is image-dependent, although it does
allow for the use of larger blocks to take care of smoothly varying image regions and
smaller ones to capture detail in intricate regions such as rugged boundaries and fine
textures. The domain blocks form the pool D consisting of all image blocks and these
are then classified according to their features as;

(1) shade blocks, Ds,
(2) edge blocks, Dg, and
(3) midrange blocks, Dm.

Shade blocks do not possess significant gradients and are not used as domain blocks.
Hence, they can be removed from the pool. On the other hand, edge blocks possess
strong changes of intensity and are split further into simple and mixed edges.
Midrange blocks possess moderate gradients but no definite edges.

Now consider an rxr digital image p quantised to 256 grey levels. The original image p
is partitioned {Ri } oy Nto range cells of two different sizes. The image

transformation can be represented as;

N-1
T=Zgi with g; =T; o§;, ©)

i=1

where S; and T; are the geometric and massic parts of g;. First, the spatial construction
S: must be constructed by selecting an image domain block ppi of size DxD, which will
be contracted to a block Si(upi) of size BxB. The symbol o represents the part of the
image constrained to block D;. The specification of the domain cell D; is equivalent to
the description of the spatial contraction Si. The second part consists of finding the
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block transformation T; which minimises the distortion between TioSi(upi) and piki.
The distortion measure used by Jacquin is the rms distortion between image blocks. A
pool of massic transformations T can now be obtained. The encoding of the range
blocks plr consists of utilising the self-transformability by finding the best pair
(DyTj)e DxT such that the distortion d(ufri, TioSi(wlp)) is a minimum. By
implementing this partitioning scheme Jacquin was able to achieve a bit rate of 0.06
bpp with a Peak SNR (PSNR) of 31.4 dB for an 8 bit 512X512 resolution of the image of
Lena.

Jacquin’s method, however, expends too much time because of the large amount of
searching in the domain block pool. To overcome this problem, Bani-Eqbal [41] has
devised a new technique for speeding up the search. He proposes an incremental
method that employs Jacquin's method, but limits the domain block pixels by
averaging to half their size. This is referred to as decimating [39]. He then flips them
and compares them with the range blocks. The domain blocks are arranged into a tree,
so that the tree can be navigated to select a small number of candidate blocks. By using
this method he is able to achieve for a 256X256X8 bit version of Lena a speeding up of
more than 50 times on the Jacquin’s complete search method without any noticeable
degradation in image quality. Specifically, he finds that it takes 8750 s to encode the
image on a SUN Sparcstation 10 Model 30 using Jacquin's method whereas with his
method it only takes 150 s with a marginal increase in rms distortion (6.7 for the
complete search method as opposed to 8.7 with his method).

6.2 Quadtree Partitioning

Fisher et al [42] were first to introduce adaptive methods in the encoding process. They
employed various approaches including quadiree, rectangular and triangular
partitions of the range blocks to improve the fidelity of an image. They also pointed
out that it is not necessary to impose strict contractivity conditions on each of the
coded transformations since the eventual contractivity of their union is sufficient to
ensure convergence of the iteration process during decoding.

In quadtree partitioning a square is divided into four equal sub-squares when it is not
covered sufficiently by some domain. The process continues recursively beginning
with the entire image and continuing until the squares are small enough to be covered
within a specified rms tolerance. Small squares can be covered better than large ones
because adjoining pixels in an image tend to be highly correlated. Thus, an image can
be represented as a tree in which each node contains four subnodes, corresponding to
the four quadrants of the square while the root of the tree is the initial image.

An algorithm based on the above method can be developed by assuming that the
image contains 256X256 pixels. The collection of permissible domains D can be all the
sub-squares of 8X8, 12X12, 16X16, 24X24, 32X32, 48X48 and 64X64. Next the image is
partitioned recursively until the squares are 32X32. Then an attempt is made on each
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square to be covered in a quadtree partition by a larger domain. The success of each
attempt is determined by meeting a predetermined tolerance value e. When this
condition is met, the square can be called R, and the covering domain D;. If the
condition is not met, then the square is subdivided and the process repeated.

According to Fisher [38] the algorithm works well, but can perform even better if the
domain pool includes diagonally oriented squares. As an example, Fisher states that
for a 256X256 grey image of a collie the quadtree scheme yields a compression ratio of
28.95:1 with an rms error of 8.5. However, the domain-range comparison step of the
encoding is computationally intensive and so a classification scheme is invariably used
to minimise the number of comparisons.

Several classification schemes exist. One of these schemes is the block method used by
Jacquin [39], as already described, while another is archetype classification [38]. Here
an archetype 4 is determined by searching through the entire domain set to find that
member of the set that covers the other members best. Here covering means that both
the domain and corresponding transformation which result in an accurate mapping to
each range are found. Archetype classification is similar to determining a Vector
Quantisation (VQ) codebook, but a major difference is that the transformation, w, is
included in the process of determining archetypes.

In Chapter 4 of Ref. [38] Boss and Jacobs introduce an archetype classification scheme
which is subsequently employed to encode the standard Lena image. They describe
how five different sets can be generated, each consisting of 72 archetypes. Three of the
archetype sets are determined from three sets containing five qualitatively dissimilar
256X256X8 images while the remaining two are determined from sets of five
qualitatively similar images. None of the sets of images contains the Lena image or any
other test image. Boss and Jacobs show that when the number of classes from each
archetype set is the same as conventional block classification schemes [43], the latter
are able to encode images much faster than the archetype method, although image
fidelity or rather, the PSNR, is significantly better using the former method. As a
consequence, the number of archetype classifications can be lowered, which not only
yields a better PSNR, but also reduces the encoding time to below that for the
conventional scheme with its higher number of searched classes. By considering only
six searched classes for the archetype method Boss and Jacobs show that the Lena
image takes about 200s to encode on an Apollo 4500 workstation yielding a PSNR of
24.25 whereas with 24 searched classes in their conventional scheme encoding of the
Lena image takes over 300 s yielding a PSNR of 24.1.

6.3 HV-Partitions

A deficiency in quadtree partitioning is that no attempt is made to select the domain
pool D in a content-dependent manner. The selected collection must be very large to
enable a good fit to the given range. A technique to overcome this deficiency whilst
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simultaneously increasing the flexibility of the range partition is to employ HV-
partitioning. In an HV-partition a rectangular image is recursively partitioned either
horizontally or vertically to form two new rectangles until a covering tolerance is
satisfied as in quadtree partitioning. This technique is much more flexible since the
position of the partition is variable, thereby allowing the partitions to share some of
the self-similar structure. For example, partitions can be arranged so that edges in the
image will run diagonally through them. It is then possible to use the larger partitions
to cover the smaller ones with the expectation of obtaining a good cover. For a more
detailed description and variation of this technique the reader is referred to Chapter 6
of Ref. [38].

When encoding with HV-partitions, the same two basic steps required are as for the .
quadtree method. These are;

(1) recursive partitioning to establish nonoverlapping ranges, and
(2) domain searching to determine the domain that will map onto a particular range.

Each pixel in the original image is assigned to exactly one range through partitioning,
but it can appear in multiple domains, which are typically two to three times greater
than the ranges. As before, the affine transformation of the pixel values must be
contractive.

In HV-partitioning, however, the average pixel value for each row and column of
pixels, of the particular range undergoing partitioning, is calculated. These averages
are used to compute successive differences between the averages. Then a linear biasing
function is applied to each of these differences, which multiplies them by their
distance from the nearest side of the rectangular range. That is, if the range contains
pixel values 7, ; for 0<i <N and 0< j < M, then the horizontal sums,

Z i

1

Z %
j

are computed, subtracted and multiplied by the biases,

and vertical sums,

min(j,M-j-1)/ (M-1) and min(i,N-i-1)/(N-1),

respectively. The first partition is found by determining the maximum value of all the
biased horizontal and vertical differences so that it is either located at horizontal
position j or at vertical position i, depending on which yields the larger biased
difference. This yields two rectangles which tend to partition the given range along the
strong vertical or horizontal edges while avoiding narrow rectangular partitions.

The domain search is almost the same as the quadtree method. Once a rectangle is
divided, a domain is sought for the largest currently uncovered range. Unlike the
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quadtree method, it is not the rms difference but the square difference of the pixel
values that is compared with a predetermined threshold to determine when
partitioning takes place. If the square difference is smaller than the threshold, then the
transformation is accepted, otherwise the range is partitioned into two new ranges.

The encoding time can also be accelerated by employing one of the following methods;
(1) quadrant classification,

(2) encoding by range size, or

(3) domain-range ratio restriction.

Decoding can be performed by a more efficient method than the standard method of
jteration to a fixed point. This more efficient method involves pixel referencing and
low-dimensional fixed point approximation. For more details of the above methods,
the reader is referred to the article by Fisher and Menlove in Chapter 6 of Ref. [38].

The Fisher and Menlove technique can be applied at various optimisation levels
ranging from 0 to 8 with each level resulting in a decrease in the number and type of
comparisons to be performed. At high optimisation levels very rapid compression is
achieved yielding high compression ratios, but not very good fidelity. Specifically,
Fisher and Menlove obtained the following results;

Table 1 Results obtained by Fisher and Menlove

Level Compression PSNR (dB) Encoding
Ratio Time (secs)
5 14.7 34.62 979.9
2 394 30.99 11221
6 80.2 28.15 42.5

By inspecting the reproduced images they were able to rule out the final case as an
-acceptable level. In addition, they found that the relationship between the PSNR,
compression ratio and encoding time is linear on a log scale.

Popescu and Yan [44] have also developed an adaptive block splitting scheme which is
more flexible than a quadtree method. The image is split into blocks according to a tree
structure with the base or roots consisting of the initial 24x24 block splits of the image.
Branches are formed by two partitioning attempts; the first creates nine 8x8 blocks and
the second four 12x12 blocks. On the first branch each 8X8 block is searched for a
match in the pool of domain blocks. If none is found, then further branches are created
by splitting the 8x8 block into four 4x4 blocks. On the second branch each 12X12 block
is searched for a match in the pool of domain blocks and if none is found, then the next
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level is investigated which consists of four 6x6 blocks, one 8x8 and five 4X4 blocks and
nine 4x4 blocks. The path producing the shortest code is eventually selected. Popescu
and Yan state that this splitting strategy produces optimal results compared with
quadtree partitioning and have applied their method to a colour image of a fish
achieving a high compression rate of 31.44 and a PSNR of 36.14, but the encoding time
is not given.

6.4 The Bath Fractal Transform

Monro and Dudbridge [45] have developed the Bath Fractal Transform (BFT) method
of encoding rectangular grey-scale image blocks which eliminates the need for
searching. Zero searching fractal transforms are particularly important because both
the coding and decoding speeds are fast. The image is tiled with reduced copies of
itself using a least-squares approximation to derive an optimal mapping or set of affine
transformations known as a Self Affine System (SAS). The approximation to a
rectangularly tiled block is found by evaluating various low order moments over the
block and solving a set of four linear equations for each tile. The method is easy to
implement and is feasible for real-time applications. A brief description of the method
appears below while more extensive details can be obtained from Refs. [45-47].

To encode an image, an Iterated Function System (IFS) of order N in R? is found. This
is the SAS, which is defined as,

w={w, k=1,.,N}, @)

(Y ()
k — .
o a)o) o
The IFS is defined arbitrarily with a rectangular attractor and is called the domain part
of the BFT. The attractor A could be, for example, any non-overlapping tiling of the
image. For each k a fractal function f(x,y) known as the function part of the transform,

is defined on A which approximates the grey scale g(x,y) of tile k. The fractal function
is specified by a recursive set of mappings,

f(wk(x,y))=vk(x,y,f(x,y)). (5)

where,

Contracting an image fragment f(x,y) onto the image introduces self-similarity and
hence, the process can be viewed as fractal. The mappings form a collection of
functions which, when iterated or rendered, form an approximation to the image
according to the Collage Theorem (see Appendix B). The BFT finds the least squares
mapping and vx can be any function that is contractive of f. When vy is a polynomial in
(xy), the BFT involves evaluating low order moments over the image blocks and the
solution of small sets of linear equations. Grey scale mappings can be represented as
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vz, f)=a+b,x+b,y+c, x* +¢, ¥ (6)
+d, x> +d, ¥’ +e f(x,y).

A zero order fractal is one where all its coefficients except for 2 and e are equal to zero.
The first order terms in x and y are referred to as a bilinear fractal transform while the
second order terms are referred to as biquadratic.

By minimising the Collage Theorem with respect to the coefficients, a fractal least
squares approximation can be obtained to a given function g(xy). That is, by using the
rms metric (Eq. (1)), one minimises for each k by taking partial derivatives of,

[edgtrey)—a=b,x=b,y- eg(x,y)]zdL, @)

and setting them equal to zero to obtain a solution for 4, bx, by and e.

Surprisingly, Monro and Woolley [47] have found that to obtain high fidelity or low
compression images, it is better to employ higher order methods while low order
fractal transform methods are better for low fidelity images. This means that the type
of fractal transform method one employs is dependent upon the application. For
example, if the p-UAV were to be employed in surveillance missions involving large
expanses of water, then low order fractal transform methods may be suitable, whereas
for reconnaissance missions in dense vegetation, the opposite would seem to apply.

Monro and Dudbridge [48] have also developed the Accurate Fractal Rendering
Algorithm (AFRA) that enables fast decoding of video streams. The algorithm
overcomes problems associated with traditional methods which attempt to construct
an exact fractal when only a representative/finite set of pixels is required on a graphics
screen of finite resolution. Determining this finite set is called rendering of the fractal.
Monro and Dudbridge introduce the non-iterative Minimal Plotting Algorithm (MPA)
to show how deterministic fractals can be rendered by generating a pixel set that
approximates the minimum cover of an attractor. Compared with the Random
Iteration Algorithm (RIA), the MPA is able to plot 101,258 points of the particular
fractal known as the Sierpinski triangle using 303,774 transformations whereas only
84% of the MPA points are plotted with the RIA after 303,774 iterations. The AFRA is
an adaptation of the MPA, which renders fractal functions as given by Equations (5)
and (6). That is, it approximates grey scale images by a simple extension of the MPA.
Monro and Dudbridge conclude that the MPA and AFRA display IFS fractals at any
desired resolution in very few computations per pixel and that they help overcome a
major barrier to the application of fractal technology by supporting real-time
performance video compression/decompression. This is demonstrated in Ref. [48]
where the BFT and AFRA are combined to produce a real-time fractal video
compression scheme with bit rates as low as 40 kbits/s while still displaying images at
25 frames per second.
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6.5 Parallel Processing

An alternative approach of avoiding the intense computations required in the fractal
encoding of images is the massively parallel implementation scheme developed by
Xue et al [49] for a multi-SIMD quad pyramid machine. Typically, fractal encoding
complexity is O(n?) for an nxn image, which prohibits real-time application. The
scheme in Ref. [49], however, reduces the complexity to O(n?), the same order as the
decoding complexity. Using a 256X256 image, Xue et al achieved the following results
on a pyramid machine with a base of mxm processors;

Table 2 Results achieved by Xue et. al.

m B Tp (S)
256 8 32
16 87

128 8 128
16 350

64 8 513

16 1399

In the table, B represents the number of bits in the data and 1 is the parallel computing
time. The scheme can be implemented on smaller machines, but as can be seen from
the table, the computing times increase.

6.6 Fractals and the DCT

Sloan [50] has carried out two studies to compare fractal transform coding with JPEG
implementations of DCT compression. The first study involved images with a
resolution of 640X400 at 24 bits/pixel while the second involved images with a
resolution of 1024X1024 at 16 bits/pixel. Image fidelity was measured by comparing
the rms difference between the original digital image and the compressed image and
then again using the decompressed image. In the first study compressed file sizes
ranged from 5 to 50 K. It was found that for the larger file sizes both coding techniques
yielded similar results, but for the lower file sizes, fractal transform coding yielded
significantly better quality imagery than the DCT. In the second study compressed file
sizes ranged from 6 to 90 kbytes. It was found that the DCT broke down for
compression ratios greater than 200, while this only occurred for compression ratios
well in excess of 800 for fractal transform coding. For all compression ratios considered
in the second study, it was found that the rms error differences for the DCT were
always higher, ie. of lower fidelity, than the corresponding images from fractal
compression. This was borne out by visual inspection of the resulting images in which
the JPEG images displayed block artifacts as the limit of the JPEG technique was
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approached. Thus, Sloan concludes that the fractal transform coding permits much
smaller file sizes to be attained.

A novel idea put forward by Zhao and Yuan [51] is to combine fractal transform
coding with the DCT. They have claimed that although fractal transform coding can
achieve high compression, the quality of the decompressed image is not good. Their
new method partitions the original image into 8X8 range blocks and 16X16 domain
blocks denoted by F,(u,v) and F,(u,v) respectively. After these are transformed by

the DCT, the range blocks are classified according to their AC coefficients into simple
and complicated range blocks. A simple range block is approximated by storing its DC
coefficient F,(0,0) which only requires 10 bits. A complicated range block is

approximated by,
Fr(u,v) = o p(Fp(u,v)), @)

where, ¢ is a contractivity operator mapping domain blocks onto range blocks and tis
a compound transformation consisting of one of eight possible isometries that have
been modified into DCT forms, a scaling and a luminance shift. The method then
searches for the best matching domain block. Altogether 27 bits are required to
approximate a complicated range block, which include 10 for the coordinates of the
best matching block, 3 for the scaling factor, 3 for the isometry and 11 for the
luminance shift. Zhao and Yuan have applied their method to the Lena image
achieving a compression ratio of only 12.4 but a very good SNR of 32.3 dB. However,
there is no mention of encoding and decoding times.

Finally, a new technique [52] is currently being developed that incorporates the high
compression capabilities of fractal transforms into a DCT based compression algorithm
as recommended by JPEG and MPEG. The idea is to extract the high frequency
information or features of an input image from the low frequency information. The
extracted features are to be encoded into fractals while the remainder of the image is to
be compressed by a combination of DCT, VQ and entropy coding following the MPEG
specification. Since the features of an image will undergo fractal transform coding, it
will mean a reduction in the number of required computations and thus, this
technique offers the potential of achieving high compression rates and fast processing.

7. Wavelet Transform Coding

The term wavelet was introduced at the beginning of the 1980s by a French
geophysicist, J. Morlet [53,54]. It denotes a univariate function yeRr, which, when
subjected to the fundamental operations of integer shifts and dyadic dilations yields an
orthogonal basis of L2(R). Such a function is called an orthogonal wavelet which can be
applied to a finite group of data. Functionally, it is very much like the Discrete Fourier
Transform where the input signal is assumed to be a set of discrete time samples. A
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wavelet can be viewed as a bump which can be squeezed or expanded by a dilation
and shifted by a translation. Wavelet coefficients can be efficiently computed and
functions reconstructed from these coefficients using algorithms known as the wavelet
transforms [54]. For a mathematical description the reader is referred to Appendix C.

7.1 Image Compression using Wavelets

Wavelet techniques have attracted much interest over the last few years because they
not only eliminate the distortion that arises from data blocking, they also bring about a
reduction in the block artefacts associated with Fourier based spectral methods such as
the DCT. Furthermore, they can be employed to take advantage of the piecewise
polynomial nature of real world images [55]. In essence, wavelet techniques are able to
condense a large percentage of the total image into low frequency terms and can be
used to approximate functions with little smoothness, a particularly useful feature
with regard to image compression [54].

7.2 Implementation

The major deficiency of wavelet reconstruction is that the deepest nested dilation from
decomposition must be the first to be reconstructed. This means that transformed data
must be saved in memory so that the output appears in the reverse order in which it is
calculated. Thus, the size of the input blocks and resolution in wavelet decomposition
are limited by available memory. In fact, most of the effort in wavelet transform coding
is in scheduling the filters and managing the input and output.

Hoag and Ingle [56] used the pyramid approach to wavelet data compression with
vector quantisation as opposed to the commonly used scalar quantisation in which
only the most significant bits of the wavelet coefficients are kept. Their aim was to
compress underwater video data onboard an Autonomous Underwater Vehicle or
AUV to enable it to be transmitted acoustically to a remote site. To support this
application, the data must be massively compressed. They used a 256x256 test image
from a clip of underwater video taken of the Titanic. The test image exhibited low
contrast and detail inherent in underwater imagery. The best results were obtained
with a 5-step wavelet decomposition in which the higher subbands coefficients were
set to zero. The reconstruction of the Titanic image yielded a PSNR of 31.7 dB and the
quality was excellent. Hoag and Ingle then made a comparison with the JPEG DCT
algorithm. They found that in the low bit-rate (high compression) range between 0.1
and 0.2 bits/sample, the quality of the JPEG reconstructed images dropped off
dramatically due to the inherent blockiness distortion caused by zeroing too many of
the high frequency DCT coefficients. The Wavelet/ VQ approach achieved much better
PSNR results at the low-bit rates while better quality reconstructed images were
obtained with the JPEG algorithm for bit rates greater than 0.2 bpp. In particular, Hoag
and Ingle found that at 0.16 bpp, or a compression ratio of 50:1, the Wavelet/VQ
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approach produced a degraded image due to blurring that remained intelligible
whereas the JPEG image was distorted beyond recognition.

Zettler et al [55] were able to compress Lena images to ratios of 100:1 (0.08 bpp) and
50:1 (0.16 bpp) using wavelet transform coding. At 100:1 the decompressed image was
distorted. Despite the high noise level, however, the features of the first reconstructed
image were preserved as well as edges and general shapes. The distortion was
restricted primarily to textures. For example, a halo effect was produced in the region
immediately surrounding the image. Zettler et al also claim that advanced techniques
can be employed to reduce the apparent distortion in images. The second
decompressed image possessed considerably more fidelity. Zettler et al also concluded
that with a custom chip implementation, entire multiplication lookup tables can be
pre-loaded so that performance can be markedly improved by reducing the time
required to carry out computation, which is necessary if a real-time capability is to be
achieved with discrete wavelet transform (DWT) coding. It should also be mentioned
that Zhang Ye et al [57] have also employed VQ in conjunction with DWT coding on
256X256X8 bit images and have obtained SNRs of 26.04 and 23.06 dB at coding rates of
0.78 and 0.70 bpp respectively.

In an interesting approach Rinaldo and Calvagno [58] have combined fractal transform
coding with wavelet transform coding. First, the original images undergo wavelet
decomposition whereupon each subimage is divided into range blocks. The range
blocks are then matched with domain blocks chosen in the four lowest resolution
subimages and coded through a description of the map that transforms the domain
block into a range block. Rather than recursively coding range blocks from the blocks
in the image, Rinaldo and Calvagno predict the range blocks of the subimage from the
blocks of low resolution images which they claim simplifies the decoding procedure
considerably and allows a more accurate control of the reconstruction error. This
image decomposition technique acts as an automatic classifier of blocks, thereby
reducing the block searching time and yielding smaller mean squared errors. As a
consequence, Rinaldo and Calvagno state that their Wavelet-Fractal Coder (WFC)
provides an improvement in both the compression rate and computational time.

Rinaldo and Calvagno applied their WFC to a 512x512X8 grey-level image of the Lena
image. First, they present the original and reconstructed image at 0.25 bpp (32:1). The
visual quality of the reconstructed image was fairly good, but some artefacts and
ringing effects were noticeable near the edges. They also found that the WFC
performed better than JPEG coding over an entire range of bit rates yielding an
improvement in PSNR that was almost independent of bit rate. The total coding time
for the image was about 2 mins on a Sun SPARC workstation with similar times
involved for other images. Thus, the coding time is slightly longer than that by JPEG,
which brings into question its suitability for real-time applications at present.
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8. Discussion

So far, we have reviewed the current state of the art on three of the most prominent
image compression techniques, but have not made any comparison between them
which we aim to carry out in this section. Our comparison will be hampered by the
shortage of literature directly comparing the techniques and the fact that we have been
unable to analyse existing software employing the techniques.

Before proceeding any further we shall be required to give an indication of what we
consider to be an acceptable image quality. Although our choice may be open to
debate, we are going to adopt the rule of thumb that an image compression algorithm
yielding a PSNR of more than 30 dB is acceptable.

Fisher et al [59] have made a comparison of fractal transform coding with the EPIC
(Efficient Pyramid Image Coder) wavelet compression routine and JPEG compression.
Their results are preliminary since the encoding time was not considered as a factor
and that none of the codes had been adequately optimised. Because the degree of
optimisation varies greatly for each technique, it may overshadow the strength of a
particular compression technique. When encoding in fractals Fisher et al considered
both quadtree and HV-rectangular partitioning approaches.

The images used in their study were 512X512X8 bit versions of Lena and the Boat
benchmark image. The results are markedly different for PSNRs greater than 30 dB
compared with those lower than 30 dB. For lower PSNRs JPEG compression yields a
much lower compression ratio than the other approaches. For PSNRs greater than 30
dB, fractal transform coding employing quadtree partitioning yields the lowest
compression ratio. For PSNRs greater than 35 the three remaining techniques yield
almost identical compression ratios while for PSNRs between 30 and 35 there is a
noticeable difference with HV fractal encoding offering the highest compression ratios.
Specifically, for a PSNR of 30 dB JPEG coding offers a compression ratio of about 35:1,
whereas the EPIC wavelet software and the fractal encoder with HV-rectangular
partitioning offer ratios of about 45:1 and 55:1 respectively.

Fisher et al also present decoded images of the Boat benchmark image. They present
the original image first and then give the JPEG coded version at a compression ratio of
54:1 (0.147 bpp). Here the PSNR is 23.7 dB and it is quite clear that many of the
distinctive features in the original image such as the lighthouse and parts of adjacent
boats have become severely degraded. The EPIC Wavelet version is presented at a
compression ratio of 58:1 (0.138 bpp) and a PSNR of 26.4 dB. The image is a much
better quality image than the JPEG image, but is not as fine as the fractal version,
which has a compression ratio of 58.1:1 and a PSNR of 27.2 dB. Although the fractal
version is the best of the images, very fine detail such as the boat's name is not as
conspicuous as in the original image.
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We have already mentioned that the reception of 320X200X8 images from the p-UAV
at a rate of 1 frame/s requires a transmission rate of about 0.6 Mbits/s. For
transmission in the VHF and higher frequency bands this does not present a problem,
but unfortunately, it does mean that the p-UAV system can only be deployed in LOS
operations. For non-LOS operations trans-mission is possible in the HF range provided
permission can be obtained to combine four pre-allocated bandwidths as described in
Section 3, thereby extending the bandwidth to 10 kbits. Then the data need only be
compressed by a factor of 64. We have seen that this compression ratio is almost
achievable with fractal compression, but not with wavelet and DCT encoding. Of the
 remaining two techniques the EPIC wavelet routine offers significantly better
compression ratios. However, if the frame rate were reduced to 0.5 Hz or slightly
lower, then it would be possible to transmit images by employing DCT coding. In
addition, although a compression ratio of 64:1 is almost achievable with fractal
encoding, the problem with fractal encoding is whether the encoding can be
accomplished sufficiently quickly to meet near real-time requirements. Of course, this
is one of the major topics in fractal transform coding currently under investigation as
discussed in Section 6.

From our discussion of the three data compression techniques it can be seen that the
DCT is the technique offering the closest to a near realtime capability. Rinaldo and
Calvagno [58] mention that their WFC takes slightly longer than the DCT while fractal
encoding takes significantly longer than the other two methods. Furthermore, to
achieve higher compression ratios more processing time is required. Thus, parallel
implementation, software optimisation and improvements in processor technology are
still required before the other techniques will be able to match the current processing
speed of the DCT.

Transmission of 640X400X24 (VGA quality) images at a TV frame rate of 25 Hz as
described under naval operations in Section 3 requires a transmission rate of at least
144 Mbits/s, which means that transmission can only take place in the VHF or UHF
bands and only after significant compression (greater than 30:1) has been applied. For
these operations the range of the vehicle is, therefore, limited to LOS applications. In
addition to the LOS limitation, the range is dependent on the signal strength and the
gains in the antennas for the links.

Because of its compactness, the vehicle would possess a limited power and operate
with an omnidirectional antenna. However, the GCS would be able to have a high gain
directional antenna capable of high transmission power, thereby allowing the range to
be extended. Typical UAV data link ranges with this arrangement range between 40
and 50 km. For the p-UAV the available power at the GCS will be certainly less than
typical UAVs and the antenna pointing accuracy less precise. This means that a larger
beam width would be required to monitor the p-UAV resulting in a lower maximum
range.

In order to reduce the size of the bandwidth further after compression has been
applied to the VGA images, the only remaining option is to reduce the frame rate since
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we have seen that compression ratios at best range from 30:1 for JPEG compression to
55:1 for fractal encoding for PSNR values of 30 dB. Although this means transmission
would not appear to be continuous to operator at the GCS, operating with a smaller
bandwidth opens up the following possibilities;

(a) Transmission at the original frequency and power leads to better Signal to Noise
Ratios, or in the case of digital data reduced Bit Error Rates (BER). This
improvement can be used to extend the range or provide better immunity to
external interference.

(b) The transmission power may be reduced by trading the improved SNR/BER
against transmission power.

(c) The improved SNR/BER could also be traded for wider antenna beam width
(thereby reducing antenna pointing requirements) or longer range.

9. Conclusion

In summary, the downlink for the p-UAV system in the short term could be based on
DCT compression operating in the VHF/ UHF bands and would have an LOS range of
about 30 km using a directional antenna. For the naval operations mentioned in
Section 3, however, transmission of VGA quality images would almost certainly
require a reduced frame rate from the TV rate of 25 Hz. For land based operations
where the resolution is not as critical and hence, can be reduced significantly, it would
be possible to transmit images at the TV frame rate. Alternatively, less compressed or
better quality images could be transmitted at the reduced frame rate.

A longer term aim would be to employ fractal and/or wavelet transform coding
techniques to carry out the image compression. With continuing research into these
data compression techniques and further advances in microprocessor technology,
there is more than a real possibility that these techniques will offer a near realtime
capability with compression ratios significantly higher than DCT compression in the
not too distant future.
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Appendix A

Mathematical Details of the Discrete Cosine
Transform

As mentioned in Section 5, the DCT's success as an image compression technique lies
in its ability to eliminate the less visually stimulating high frequency components of a
signal and to retain the quantised values of the low-frequency Fourier coefficients. In
this appendix we present the mathematical details that are necessary for
understanding how an algorithm based on the DCT can be developed.

Signals are defined in terms of discrete values of the independent time variable and are
represented mathematically as sequences of numbers. A discrete-time system is
essentially an algorithm for converting one of these sequences (an input) to another
(an output) [60]. If x(n) represents an input sequence and y(n) an output sequence, then
the response h(n) of a system to a digital impulse is defined as,

ymy=Y, h(m)x(n—m). (A1)

m=—

Introducing x(n)=exp(iown), where o is the frequency, into the above equation yields,

y(n)=e™" > h(m)e™" = x(n)H(e™), (A2)

m=-—w0

where, H(e™) is the Fourier Series representation of the impulse response [60].

The Discrete Fourier Transform (DFT) is obtained by considering a sequence x(n) with
period N such that,

x(n) = iX(k)exp(Z;zik) , (A3)
k=~

where w =27k / N are the only possible frequencies. Because of the periodicity x(n) can
be simplified to,

N-1

x(n)=")_ X(k)exp(27ik), (A4)
k=0

while the DFT becomes,
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X(k)=§x(n) exp(=27ikn | N). (A5)

n=0

Following Ref. [61] we consider the signal to be a 2N-point even extension of the
discrete-time signal x(n) so that,

_ [x(@), 0<n<N-1
g(n)_{x(?-N—n—l), N<n<2N-1 (A6)

As a consequence, the DFT for g(n) can be written as,

2N-1

X(k)="Y gmWyy, (A7)

n=0
where W% = exp(~izmk / N), while its inverse known as the IDFT is given by,

2N-1
1

g =7 ZX(k)m" : (A8)

Substituting Eq. (A6) into Eq. (A7) yields after some algebra,

7Q2n+ 1k

N ] =Wk Ck), (A9)

N-1
X(k)=2W;3" Z x(n) cos[

n=0

with,

(2n + l)k]

- (A10)

Ck)= 2§ x(n) cos[

n=0

and 0<k<2N-1.Eq. (A9) is known as the One Dimensional Discrete Cosine Transform
(1D-DCT) of the discrete time signal and its inverse, the 1D-IDCT, is given by

[C(O) Z oo [n(2n+1)kﬂ ’ (A11)

where 0 <n <N-1. It is as a result of the even symmetry of the signal that the cosine
factors have appeared.

Image data represent two-dimensional signals and thus the preceding material must
be extended before it can be utilised as a data compression technique. The 2D DCT is
obtained by defining the signal as a (2Nx2N)-point even extension in which,
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x(n;,n,), 0<m <N, -], 0<m, <N, -1
y(2N, —=n, - 1mn,), N,<n <2N, -1, 0<n, <N, -1
Y1) =0 AN, —n, ~1), 0<n, <N, -1, N,<n, 2N, -1

YN, -n, —12N, —=n, =1, N,<n <2N, -1, N, <n, <2N, -1

By using the above results the 2D Discrete Fourier Transform of y(n;,n,)can be
expressed as,

2N;-12N,-1
Y(kok)= D, O y(n,n)Wyu W2, (A12)
m=0 n,=0

while its inverse (the 2-D IDFT) is given by,

2N,-12N,-1

y(n,,n,) = Z ZY(k,,kz)Wz;,?’“ Wz‘;;"’. (A13)

k=0 k=0

Substituting y(n, n,) into Eq. (A8), one obtains after some algebra,
Y(kysky) = W, Won* Clli k), (A14)

where,

Clk,,k,) = 4%]%2_}@1 ,nz)cos[”(z”' + 1)k, ]cos[”(z  + Dk, ] ., (A15)

2N, 2N,

n,=0n,=0

and 0<k; <N; -1, (j=12). Eq. (A15) is known as the 2D Discrete Cosine Transform (2-
D DCT) of the sequence x(n,,n,) and its inverse, the 2-D IDCT, is given by,

N-1N,-1
x(ny,ny)= L Z Z C'(k, ,kz)cos[”(zn1 : l)kl :Icosli ”(an al 1)k2 :|, (Al6)

NN, &6 2N, 2N,
where,
C(0,0)/ 4, k=0, k,=0
il k) = C(k,0)/4, Kk #0, k,=0

C(0,k,)/ 4 k=0, ky#0
Clk,k,) k=0, k20
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In JPEG compression the pixel values from 8x8 blocks of the original image are first
adjusted to centre them at zero. For example, if pixel data are in an 8-bit format, then
128 is subtracted from them so that the signal can be regarded as even. Then the DCT
or Eq. (A14) is applied to the normalised pixel values so that transformed 8-bit data are
stored as 11 bit signed integers. It is these signed integers that are quantised by
dividing them by a quantisation coefficient and rounding off to the nearest integer.
The quantisation co-efficients vary based on the fact that quantisation can be much
more severe for higher frequencies than for lower frequencies because of the the
human visual system's relative insensitivity to high frequencies. In addition, because
JPEG compression transforms 8x8 blocks, there is no need to evaluate the cosine
factors in Eq. (A14) repeatedly. Instead, a look-up table can be em-ployed. For more
details regarding implementation the reader is referred to Refs. 25 and 26.
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Appendix B

Fractal Transform Coding

Here we review the basic mathematical concepts underpinning the implementation of
deterministic fractals in image compression. For a more comprehensive treatment of
the subject the reader is referred to Refs. [26,38,62].

Barnsley [26,62] was first to propose the idea of fractal image compression in which
real-life images could be modelled by deterministic fractals. Deterministic fractals
represent the fixed points of a set of two-dimensional affine transformations. As a
consequence, the mathematics of Iterated Function Systems (IFS) and Recurrent Iterated
Functions Systems (RIFS) together with the Collage Theorem have been developed to
provide the theoretical foundation of fractal image compression. We shall describe
IFSs here, although it should be pointed out that to encode images in an automated
approach, one must use piecewise affine contractive transformations, which make use
of only the partial self-transformability of images. Fisher [38] refers to these as
Partitioned Iterated Function Systems or PIFS. Because PIFSs allow not only the encoding
of grey scale images, but also partition an image into pieces that can be transformed
separately, they are able to encode many shapes that cannot be encoded by IFSs.

The basic building block of present fractal image compression systems is the affine
transformation which for two dimensions is defined as a mapping w:R’ — R*
where  w(x,y)=(ax+by+e,cx+dy+ f)and a,b,cd,e,f €eR. Such a
transformation can be represented in matrix form as,

) Y

If we consider the one affine transformation of f(x)=ax+b, Vx €eR over the

interval [0,1], then the new interval length becomes |a|. Thus, the transformation f
rescales the interval by a factor a while the left endpoint of the interval is translated to
b. When |a|<1, the affine transformation is said to be contractive. For higher
dimensions we require the theory of metric spaces to define a contractive
transformation.

Let (X,d) denote the complete metric space of digital images where d is a given
metric or distortion measure and let x, denote the original image to be encoded. The
goal of iterated transformation theory is the construction of a contractive image
transformation, 7, defined from the space (X,d) onto itself, for which x, is an
approximate fixed point. This is known as the Inverse Problem. The transformation, 7,
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is referred to as the fractal code for p, while u, is said to be approximately self-
transformable under 7.

We mentioned above that deterministic fractals represent the fixed points of sets of
two-dimensional  affine  transformations. @ The fixed point of a
transformation f: X — X on a metric space (X,d) is the point x, € X such

that f(x,) = x,. A transformation f:X — X on a metric space (X,d) is Lipschitz if

there is a constant s (known as a Lipschitz factor) such that
d(f(x),f(») <sd(x,y) Vx,yeX. When s<1, f is said to be contractive or a

contraction mapping.

We are now in a position to give one of the fundamental results of fractal image
compression:

Theorem 1-The Contraction Mapping Theorem

Let f:X — X be a contraction mapping on a complete metric space (X,d).
Then f possesses a unique point x, € X such that for any point x € X, the

sequence { fo(x):n=012,.. } converges tox,, i.e.

lim /" (x)=x, VxeX. (B2)

The point x is called a fixed point of the mapping f . The proof of this theorem can be
found in Refs. [38,62]. This theorem states that the fixed point of a transformation f
will be the image one gets when the sequence f(x,), f(f(x,)), f(f(f(x)),-.., is

computed for any image x,. That is, as long as the transformation is contractive in the
space of images, it will have a unique fixed point that will then be some image.

In fractal image compression it is convenient to use the Hausdorff space H(X) where
one can study compact subsets of metric spaces. This means that by using H(R?) one

can only concentrate on drawings, pictures and other black on white subsets of R*. In
addition, when using this space, another metric is required, which is known as the
Hausdorff distance or metric h(A,B). For a complete metric space (X,d) this metric for
points A and B in H(X) is given by h(A,B)=d(A,B)vd(B,A) where xv y
represents the maximum of x and y. That is, if A is an element of the associated
Hausdorff space H(X), then,

4, (&) ={x| d( x,y) <¢ forsomey eA},
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which means that 4, (8) is the set of points of maximal distance¢ from A. The
Hausdorff distance between two elements A and B of H(X) becomes,

h,(4,B)= max{ inf{s]BcA,,(s)},inf{elAch(g)}}.

An Iterated Function System consists of a complete metric space (X,d) together with a
finite set of contraction mappings w,: X — X with respective contractivity factors sn
for n=1,2,...,N. An IFS is denoted by {X swon=12,... ,N} with its contractivity factor
s= max{s,,:n = 1,2,...,N}. IFSs, or their generalisations mentioned above, are the basic

building blocks of fractal transform coding. The PIFSs presented in Ref. [38] possess
not only the two spatial dimensions of IFSs but also a third dimension for the grey
levels of an image. This means that Eq. (B1) has to be modified to include a z
component with A now becoming a 3x3 matrix and T a three dimensional column
vector. The third row and column of A consist of zeros except for the diagonal
element which consists of a term s, to control the contrast and the additional element

0, in T controls the brightness of the transformation.

The following theorem proposes methods for constructing the fixed point (or attractor)
of an IFS. Let {iRZ:w, Wyt -,wN} be an IFS and choose a compact set A, = R’. Then

a sequence {An:n =012, } < H(R?) can be constructed. According to this theorem

known as the IFS theorem, the sequence {An} converges to the attractor of the IFS in the
Hausdorff metric. Thus, we have a procedure for calculating successive
approximations to the fixed point of an IFS.

Theorem 2-The IFS Theorem

Let {X ;w,,,n=1,2,...,N} be an IFS with contractivity factor s. Then the
transformation W: H(X) — H(X) defined by,

W(B) = Ul] w,(B) VB eH(X)
is a contraction mapping on the complete metric space (H(X),h(d)) with contractivity
factor s. That is, A(W(B),W(C)) <s.h(B,C), VB,C e H(X). Its unique fixed point,
A € H(X), obeys,

a=w =] w, (4, (B3)

and is given by,
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A=1imw" (B) VBeH(X).

n—>w

This result is proved in Ref. [62]. The fixed point is called the attractor of the IFS and as
a consequence of its uniqueness, we are led to the following theorem:

Theorem 3-The Collage Theorem

Let (X,d) be a complete metric space. Let L € H(X) and £20 be given. Choose an IFS
with contractivity factor 0<s<1, so that h(L,U:I=1 w, (L)) <e. Then h(L,A)<e/(1-s)
where A is the attractor of the IFS.

This theorem, which is also proved in Ref. [62], states that for a given set or image L
an IFS, or a set of contractive transformations, can be found for which L is the attractor.
That is, the union or collage of the images of L under the transformations is close to or
looks like L. The degree to which two images look alike is measured by using the
Hausdorff metric which in turn depends on the metric d.

To summarise the above, let (X,d) be a complete metric space and p € H(X) be any
given image. Given a set of contractive transformations such that T: H(X) - H(X),
we know from the Contraction Mapping Theorem that,

lim 7" (W)=xt V peH(X). (B4)

n—»w

From Theorem 2,

lim 7" (W)=T(w)=p, V¥ pe H(X).

n—>0

Since an attractor is unique, we have p=xr and p must be formed of transformed copies
of itself. According to the Collage Theorem, minimising the distance between p and
T(n) (the collage of the image) minimises the distance between the fixed point xr and p.
In practice, it is not possible to find a T such that u=T(u), but it is possible to find a

Mapprox satisfying T(Mapprox)=Happrox. That is,
1 & Happrox = T(Happrox) ~ T(1) =  p~ T(p).

Now we can say that a fractal image is constructed from a ‘collage’ of transformed
copies of itself and is thus inherently self-similar.
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Consider an image as a surface lying over a plane, defined by a function f(x,y), that
returns a number between 0 and 1 at each position (x,y); the range 0 to 1 can represent
grey levels from black to white [38]. The original image Mog becomes a function

mapping the unit square into the real numbers, i.. 1> =[0,1] x [O,l] — R. The image is
now split into non-overlapping domain blocks D; and range blocks R; where the union
of the domain blocks yields the original image, ie. | /D, =I*. Furthermore, we map

the domain blocks into range blocks by a collection of affine transformations so that
D, —» T (D,.) = R, . This means that the fractal compression scheme has been reduced to
a search through all the range blocks, viz. the set of all R/s, to find an R; for each D;,
which minimises some measure of distortion or similarity. That is, we search for the
part of the image that most looks like the part of the image in the domain block [38].
Specifically, we seek a transformation g € T where,
V v e X, 3s<1, suchthat d(g(u),g(v)) <d(u,v) and d(H > 8(Korg))
is as ‘close to zero’ as possible. By repeated use of the triangle inequality, it can be
shown for any image /0 and any positive integer » that,
d(luorig’gn (mN=(1- s)_ld(luorig9g(:uarig)) +5"d (U orig s o) -

From this result it can be seen that, after a number of iterations, the terms of any
iterated sequence of the form { u,=g" (,uo)}”20 , where u, is some arbitrary initial

image, cluster around the original image. In a space of discrete images, the sequence
converges exactly to a stable image which is its attractor. The closeness of g"(u,) to

Horig 15 determined by the measure or distortion d(£,;»8(H,rg)), which is generally
taken to be the root mean square difference between image blocks as described in
Section 4 and which is known in mathematical terms as an L* metric.

A fractal code is obtained from the search and represents a statement such as ‘region A
of an image is most like region B after transformation’. The original image or rather the
pixel data are not transmitted to a decoder, only the fractal code. Thus, decoding an
image consists of repeatedly applying the transformations in the fractal code to an
arbitrary initial image I, until the images converge to a fixed point [38].
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Appendix C

Wavelet Transform Coding

Wavelets represent a family of basis functions derived from one single function
subjected to shifts and dilations. In this appendix we present the basic properties of
wavelets, which are necessary for understanding and developing a wavelet transform
coding scheme in image compression.

It is shown in [63] that it is not necessary for the set of wavelet functions given by the
recursive equation of v ;,:= 2¥2y (2% -~ j) to form a complete orthonormal set.
However, when they do any function, f €L, (R), can be decomposed into a series of
the form,

f= z<fs§‘/j,k>¥/j,k > @)

JkeZ

where(f,g):= I fgdx is the usual inner product of two L,(R) functions. Eq. (C1) can

be viewed as the construction of f from bumps ¥ ;, (functions with compact support)
with small values of k contributing to the broad resolution of f and large values of &
producing the finer detail. The decomposition given by Eq. (C1) is analogous to a
Fourier decomposition of f in terms of the exponential functions e, := e*, although

important differences exist. For example, all terms in the Fourier series contribute to
the value of f at a point x while wavelets are usually of compact support or fall off

exponentially at infinity. Thus, the only terms in Eq. (C1) corresponding to /;, with
727 near x yield a large contribution at x. Hence, the representation can be regarded
as local.

Multiresolution analysis is a method of creating an orthonormal wavelet basis by
breaking L, (R) up into a sequence of closed subspaces Vj in the form of

eV, cV,cVycV, cV,c-, (€2

where Vi— L, (R) as m— . These subspaces are subject to the following properties;
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() v,cV,_1» neZ,
(i) UP= _o¥, isdensein L, (R) and N7~ _oV, = {0},

(i) f(x) eV, & f2x) €V, _1,
(V) f(x) eV f(x—k) €V VkeZ, and
(v) 3 g eV suchthatg(-k), keZis a Riesz basis for V.

A Riesz basis is a set {x,} in a Hilbert space H where an orthonormal basis {e.} and a
bounded linear operator T are related by

Ten = xn. , Vn (C3)

In addition to the above, there exists the following rule concerning the speed of
oscillations,

feV, o f2)eV,,,meZ (C4)

Soif f is an oscillating function in ¥,,, then the function oscillates twice as fast as an

elementof V, _, .

In wavelet theory it is assumed that Vj is generated by the integer translates ¢on(x)=¢(x-
n) of one single function ¢ known as the father. Each fe Vo can be written as,

f=Yado (©5)

Since ¢pe Vo and Vo < Vi1, we have ¢V from Eq. (C4) and ¢(21-)e Vo. Thus, the
wavelet basis is given by the recursive difference equation,

d(x)= icn #(2x—n), x eR, (Cé)

for some coefficients {cn}. The range of the summation in Eq. (C6) is determined by the

number of nonzero coefficients, is arbitrary and is also referred to as the order of the
wavelet. Rearranging Eq. (C6) yields,

§0) =23 h,g2x-n), xR, )

where the factor of 2 arises from normalisation. The numbers h.=cn/ V2 are called the
filter coefficients of ¢ and obey the following condition,

ih,, =42. (C8)

n=-x
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Eq. (C6) is orthogonal to its translations, i.e. f¢(x) #(x —k)dx =0. We also desire an
equation which is orthogonal to its dilations, i.. J‘q)(x)qo(2x—k)dx = (. This is the

associated wavelet or mother of the wavelets and is generated from ¢ by the following
equation,

w(x) =2 g,62x-n), g, =(-1)"h,,. (C9)

From this, other related functions can be defined,
Gna(X)=2"""¢2"x~-n) mneZ, (C10)
with the corresponding wavelets given by,
Vun(x)=2""" 92" x-n) mneZ. (C11)

The system {yxx| knez} is also called an orthonormal wavelet basis. In most applications
the sums given above are finite and we consider this to be the case from here on.

Eq. (C6) can be solved by contructing an MXM matrix of coefficients, where M is the
number of nonzero coefficients. This matrix can be designated by L with entries Ly=czi-
;- It always has an eigenvalue equal to unity and the respective normalised eigenvector
consists of the value of ¢ at integer values of x. Once these values are known, all other
values of ¢ can be generated by applying the recursion equation to get the values at
half integers, quarter integers and so on to the desired dilation. '

Plots of most wavelet functions appear to be extremely irregular, which is due to the
fact that a wavelet function is non-differentiable everywhere. The functions that are
normally used in transforms consist of a few sets of well-chosen coefficients which
results in a function that has a discernible shape such as the Haar basis function or the
Daubechies-4 wavelet. The latter is often used in data compression.

In applying wavelet theory to image compression, we note that pixel values can be
predicted by considering the complete image as a histogram and then looking at the
values of neighbouring pixels. Thus spatial correlations occurring in natural images
are taken into account. To create a good image decomposition scheme based on this
approach, the image is split into a low resolution part consisting of a smaller number
of samples than the original image and a difference signal which is the difference
between the low resolution part and the actual image. The low resolution part is
actually a good estimate of the true image due to the correlations present in real world
images. The image it generates will still contain spatial correlations and hence further
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decompositions can take place, thereby creating a hierarchical decomposition of the
original image.

An efficient decomposition scheme can be created by employing multi-resolution

wavelet bases, which we describe here only briefly. A more detailed discussion
appears in Refs. [64,65]. We let ¢ be the generator of a multiresolution wavelet basis, so

that we can put,
Ba(¥) =27 (27" 2~ 7). (C12)

The spaces Vin=span{nn | nez} correspond with different resolution levels of our
decomposition. Then there is a function, y, such that the orthogonal space
Win=span{ym | n€z} satisfies the direct sum given by,

V.=V, oW, (C13)
where,
'/,m,n (x) = 2_'"/2 V/(Z_mx _n) .

Furthermore, let P, and Q. represent the orthogonal projections on V» and Wa
respectively while the sequence (cn)ne represents the signal undergoing compression.
The projections P and Qs are defined respectively as,

0
Pof= % cf(N)d, > 2nd
n n==eo kn nk (Cl4)
an=n=2_wdk(f)v/,,,k-

The coefficients are the inner products shown below,
i (f)=<f8nx > and di(f)=<f.¥,;>

We define a sequence (cr%)nez With ci°=c, and an associated function by,

V(GEDWAMEP (C15)

Applying a multiresolution analysis to f means that f can be put equal to Pif+Quf
where the first term is the low resolution representation of f and the second term
represents the difference signal. Specifically,
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Bf=) cidy and

C16
Of= 2 di¥ 1k ( )
k
The coefficients c, are given by,
ci =< Bf>pu >=<f>fu >
= Z C,(,] < ¢on ’ ¢lk >= Z Cr?hn—Zk ’ (C17)

where,
h, =27 [§(%4)p(x — ) dx.

The coefficients di! are evaluated in a similar fashion. By repeating the procedure N
times we arrive at the decomposition,

f = Q1f+ Q2f+"'+QNf+PNf ’ (CIS)
where,
Bf=) citu
k
a-ndl an = Zdl: y/nk ‘
k

The coefficients cx* and di* are determined from the following recursive relations,
cd=Hd?! and di=Gdi! , (C19)

where,

(Ha), = Zhn-zkan and (Ga), = Zgn—zkan”

After a number of iterations, the original image sequence ¢° is decomposed into the
lowest resolution signal ¢V and the difference signals dN,dN7,.. .,dl of ever finer
resolution. The above analysis is a one-dimensional multiresolution representation and
can be extended to two dimensions by using products as opposed to sums in the above
results. The reader is referred to pp. 86-87 of Ref. 53 for this non-trivial exercise.

In summary, the Discrete Wavelet Transform (DWT) in one dimension produces two

output sequences, referred to as “odd” and “even”, from an input sequence. These can
be viewed as a pair of convolution functions or Finite Impulse Response (FIR) filters
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[55]. Both filters create an output stream that is half the length of the original input. In
many situations, the low-pass filter output or odd output contains most of the
information content of the original signal and is related to Eq. (C6) by,

N
ai=-;-zczi—f+l j>? i=1,2"-°3N/2’ (CZO)

J=t

where; czijn are the wavelet coefficients, f; is the input function of block size N and a;
are the odd output values. For the Haar wavelet there are only two coefficients, co=1
and c;=1 while for the Daubechies 4-wavelet, there are four coefficients, co=(1+V3)/4,
a1=(3+\3)/4, c;=(3-¥3)/4 and cs=(1-\3)/4. In general, higher order wavelets, ie. those
with more nonzero corefficients tend to put more information in the odd output and
less into the even output.

The high-pass filter output or even output contains the difference between the true
output and the value of the reconstructed input if it were to be reconstructed from only
the information given in the odd output. The even output values b; can also be
expressed in terms of wavelet coefficients as,

i%z(_lyﬂcﬁz_ﬁ £ i=12,.,N/2. (C21)

An important step in wavelet data compression is determining those wavelet functions
which result in the even terms being almost zero [53]. In fact, if the average amplitude
of the even output is sufficiently low, then the even half of the signal can be discarded
without significant degradation occurring in the reconstructed signal. Since most of
the information is held in the low-pass filter output, this can again be transformed into
two new sets of data. If the number of input samples is N=2P, then a maximum of D
dilations can be performed with the last dilation resulting in a single low-pass value
and a single high-pass value. Thus successive dilations represent lower and lower
frequency content by halves. In addition, to obtain high compression rates, it may be
necessary to begin with large blocks of input so that not only more dilations can be
carried out, but also lower frequencies can be represented in the decomposition.

Basically three parameters are required in implementing a wavelet coding scheme;

(i) the filter length reflecting the number of coefficients that describe the
wavelet function,

(ii) the block size N of the input, which must be a power of two, and

(iii) the number of dilations or passes of the input stream.
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For N=2b, D dilations are possible for full decomposition, but this is not always
suitable in compressing data [66].

After the transformation steps are completed quantisation is usually performed. A
finite number of real-valued coefficients is selected to form a quantisation grid. Each
coefficient is then replaced by the nearest point in the grid. The grid can be chosen by
taking evenly spaced points or by choosing points closer together near zero. The
quantised coefficients are then coded [53,55].

An exact reconstruction of the image can only be made if the decomposition
coefficients are known exactly, which is not possible since they are not integers. Thus,
quantisation of the coefficients is required, similarly as for the DCT discussed in
Appendix A. In the one dimensional case the original image can be reconstructed by
repeated use of the relation,

Pj—lf'_'ij"'ij
=ZCI{¢]I: +Zdl{'/,jk'. (€22)

This implies that,

i-1
¢ =< Pifs@jan>

= el <Bprbioan >+ 4l <V jban > (C23)
k k

= z cl{hn—zk + z dl{gn-zk .
k k

Reconstruction of the original image in either one or two dimensions relies on the
correct choice of the function ¢.

By implementing an equally spaced quantisation scheme Nacken (p. 81 of Ref. [53])
has achieved bit rates as low as 0.4 bits per pixel (95% data reduction) whilst at the
same time maintaining a high quality of reconstructed image. Fine details such as
small bright spots are preserved better with this approach due to the localisation of the
low level basis functions.
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